The Coarse Scale Velocity

Author(s):  
Philip Isett

This chapter deals with the coarse scale velocity. It begins the proof of Lemma (10.1) by choosing a double mollification for the velocity field. Here ∈ᵥ is taken to be as large as possible so that higher derivatives of velement are less costly, and each vsubscript Element has frequency smaller than λ‎ so elementv⁻¹ must be smaller than λ‎ in order of magnitude. Each derivative of vsubscript Element up to order L costs a factor of Ξ‎. The chapter proceeds by describing the basic building blocks of the construction, the choice of elementv and the parametrix expansion for the divergence equation.

Author(s):  
Philip Isett

This chapter derives estimates for the coarse scale flow and commutator. Instead of mollifying the velocity field in the time variable, it derives a Transport equation for vsubscript Element and some estimates that will be necessary for the proof. Here the quadratic term arises from the failure of the nonlinearity to commute with the averaging. Commutator estimates are then derived. To observe cancellation in the quadratic term, the control over the higher-frequency part of v is used, and cancellation is obtained from the lower-frequency parts. It becomes clear that the commutator terms can be estimated using the control of only the derivatives of v. The chapter concludes by presenting the theorem for coarse scale flow estimates.


Author(s):  
Philip Isett

This chapter presents the equations and calculations for energy approximation. It establishes the estimates (261) and (262) of the Main Lemma (10.1) for continuous solutions; these estimates state that we are able to accurately prescribe the energy that the correction adds to the solution, as well as bound the difference between the time derivatives of these two quantities. The chapter also introduces the proposition for prescribing energy, followed by the relevant computations. Each integral contributing to the other term can be estimated. Another proposition for estimating control over the rate of energy variation is given. Finally, the coarse scale material derivative is considered.


2019 ◽  
Vol 16 (7) ◽  
pp. 653-688 ◽  
Author(s):  
Leena Kumari ◽  
Salahuddin ◽  
Avijit Mazumder ◽  
Daman Pandey ◽  
Mohammad Shahar Yar ◽  
...  

Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.


2021 ◽  
Author(s):  
Anurag Mukherjee ◽  
Suhrit Ghosh

Naphthalene-diimide (NDI) derived building blocks have been explored extensively for supramolecular assembly as they exhibit attractive photophysical properties, suitable for applications in organic optoelectronics. Core-substituted derivatives of the NDI chromophore (cNDI) differ significantly from the parent NDI dye in terms of optical and redox properties. Adequate molecular engineering opportunities and substitution-dependent tunable optoelectronic properties make cNDI derivatives highly promising candidates for supramolecular assembly and functional material. This short review discusses recent development in the area of functional supramolecular assemblies based on cNDIs and related molecules.


1999 ◽  
Vol 75 (2) ◽  
pp. 262-278 ◽  
Author(s):  
Kohji Matsumoto ◽  
Yoshio Tanigawa

2007 ◽  
Vol 64 (6) ◽  
pp. 1794-1810 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity- based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-maximum Froude and Rossby numbers Fr ∼0.5 and Ro ∼1, far from the usual asymptotic limits Ro → 0, Fr → 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-δδ, plain-γγ, and plain-δγ PBMs and the corresponding hyperbalance PBMs, of various orders, where “order” is related to the number of time derivatives of the divergence equation used in defining balance and potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-δδ, hyper-γγ, and hyper-δγ PBMs, respectively. As proved in Part I, except for the leading-order plain-γγ each plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion degrades the accuracy, as conjectured by McIntyre and Norton. Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation (PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured by the smallness of the ratio ϵ = ||QPBM − QPE||2/||QPE||2, where QPBM and QPE denote the potential vorticity fields of the PBM and the PEs, respectively, and || ||2 is the L2 norm. At 30 days the most accurate PBMs have ϵ ≈ 10−2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny details. Most accurate is defined by minimizing ϵ over all orders and truncation types δδ, γγ, and δγ. Contrary to McIntyre and Norton’s conjecture, the minimal ϵ values did not differ systematically or significantly between plain and hyperbalance PBMs. The smallness of ϵ suggests that the slow manifolds defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which Ro ≲ 1 and Fr ≲ 0.5. As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, . . . 10 were carried out in which attention was focused on the amplitudes of inertia–gravity waves representing the imbalance arising in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures therefrom, the results of the initialization experiments suggest a negative correlation between early imbalance and late cumulative error ϵ. In such near-optimal conditions the imbalance seems to be acting like weak background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when measured cumulatively over 30 days.


1996 ◽  
Vol 61 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Vladimír Pouzar ◽  
Ivan Černý

New approach to the preparation of steroids with connecting bridge, based on an O-carboxymethyloxime (CMO) structure, and with terminal hydroxy group, is presented. 17-CMO derivatives of 3β-acetoxy- and 3β-methoxymethoxyandrost-5-en-17-one were condensed with α,ω-amino alcohols to give derivatives with a chain of seven to nine atoms. After THP-protection, these compounds were converted to 3-keto-4-ene derivatives. An alternative synthesis consisted in transformation of 17-CMO derivatives with bonded amino acids by reduction of the terminal carboxyl. The resulting compounds were designed as building blocks for the preparation of bis-haptens for sandwich immunoassays.


1989 ◽  
Vol 28 (4) ◽  
pp. 447-448 ◽  
Author(s):  
Klaus Weinges ◽  
Helene Iatridou ◽  
Hans-Georg Stammler ◽  
Johannes Weiss

Sign in / Sign up

Export Citation Format

Share Document