The Engine Performance Characteristics of an IDI Diesel Engine Fueled by Soybean Oil Methyl Esters

2019 ◽  
Vol 1 (1) ◽  
pp. 19
Author(s):  
A Ghurri ◽  
S K Keun

An experimental investigation was conducted to evaluate the performance of anindirect injection (IDI) diesel engine using diesel (D100) and diesel-biodieselblends (BD25, BD45, BD65) separately. The engine was run in various engineloads at constant engine speed ranging from 1000 to 2400 rpm with an interval200 rpm. The results showed that the biodiesel content decreased the enginetorque and power. This might be mainly affected by the lower LHV of thebiodiesel, and also the worse combustion due to higher density of the biodieselcompared to the diesel fuel. The loss of power due to lower heating value ofbiodiesel were not as high as the difference in their heating value that might bedown to the better lubricity of biodiesel as proved in the higher brake thermalefficiency and mechanical efficiency when using the biodiesel blends. The brakespecific fuel consumption is higher with the increase of biodiesel content but thediesel fuel delivered the highest energy to run the engine. The maximum pressureinside cylinder and the heat release rate of D100 is slightly higher than those ofbiodiesel blends.Keywords: diesel engine, biodiesel, engine performance, emission.

Author(s):  
Muhammad Hanafi Azami ◽  
Mark Savill

Aviation industries are vulnerable to the energy crisis and simultaneously posed environmental concerns. Proposed engine technology advancements could reduce the environmental impact and energy consumption. Substituting the source of jet fuel from fossil-based fuel to biomass-based fuel will help reduce emissions and minimize the energy crisis. The present paper addresses the analysis of aircraft engine performance in terms of thrust, fuel flow and specific fuel consumption at different mixing ratio percentages (20%, 40%, 50%, 60% and 80%) of alternative biofuel blends already used in flight test (Algae biofuel, Camelina biofuel and Jatropha biofuel) at different flight conditions. In-house computer software codes, PYTHIA and TURBOMATCH, were used for the analysis and modeling of a three-shaft high-bypass-ratio engine which is similar to RB211-524. The engine model was verified and validated with open literature found in the test program of bio-synthetic paraffinic kerosene in commercial aircraft. The results indicated that lower heating value had a significant influence on thrust, fuel flow and specific fuel consumption at every flight condition and at all mixing ratio percentages. Wide lower heating value differences between two fuels give a large variation on the engine performances. Blended Kerosene–Jatropha biofuel and Kerosene–Camelina biofuel showed an improvement on gross thrust, net thrust, reduction of fuel flow and specific fuel consumption at every mixing ratio percentage and at different flight conditions. Moreover, the pure alternative of Jatropha biofuel and Camelina biofuel gave much better engine performances. This was not the case for the Kerosene–Algae blended biofuel. This study is a crucial step in understanding the influence of different blended alternative biofuels on the performance of aircraft engines.


Author(s):  
Valentin Soloiu ◽  
Jeffery Lewis ◽  
April Covington ◽  
Brian Vlcek ◽  
Norman Schmidt

The project investigates the effects of peanut FAME on diesel engine combustion and thermal efficiency. The cold flow properties and viscosity were tested and were found that the cloud point (CP) and pour point (PP) of peanut FAME were 17°C and 8°C respectively, and was able to achieve CP of 0°C when blended 20:80 (wt%) with diesel No. 2 (P20). The dynamic viscosity of peanut FAME was 4.2cP (P100) and 2.85cP at 54°C (P20), both fuels are within the ASTM standard for biodiesel. The lower heating value (LHV) of peanut FAME was 37.10MJ/kg (P100) and 41.3MJ/kg (P20) compared to 41.7MJ/kg for diesel No.2 (D100), which supports the usage of peanut FAME in compression ignition engines. At residence time of 5ms from start of injection, P50 has shown positive combustion characteristics with ignition delay of 1.072ms at 2600rpm, 4.78 bmep (100% load). The P50 heat release displayed similar development compared with diesel No. 2, where premixed phase combined with diffusion combustion and reaching a maximum of 20.0J/CAD, which was higher than 17.5J/CAD for D100. Convection flux for both D100 and P50 had values of 1.4MW/m2. The total heat flux, calculated by Annand model, produced maximum values of 2.1MW/m2 for D100 compared with 2.3MW/m2 for the P50. The mechanical efficiency was only a 4% loss when observing the transition from D100 to P50. These findings support peanut FAME as a viable option when blended and used with diesel engines in order to meet the standards set forth by the RSF-2 and EISA allowing the U.S. to decrease foreign energy dependency and benefiting society through a cleaner burning fuel than is currently in use.


2020 ◽  
Vol 12 (4) ◽  
pp. 63-70
Author(s):  
Nageswara Rao GANGOLU ◽  
Radha Krishna GOPIDESI ◽  
Immadi Mehar ANUDEEP

The rapid increase of diesel engines and diminishing of diesel fuel creates a challenge for researchers to find alternative fuel. The present experiment is performed on a 3.5 kW diesel engine. Here, diesel is replaced with pure lemongrass oil (LGO) of10%, 20%, and 30% by volume with diesel. The obtained data from the experimental work may exhibit the Brake Thermal Efficiency (BTE) of LG20 equivalent to pure diesel. The specific fuel consumption (SFC) of LGO blends shows an increase compared to diesel, due to the lower heating value for LGO blends. On the other hand, LGO blends show lower emissions of NOX, due to the lower peak flame temperature. When compared to the other samples, the LG30 gives a maximum reduction in NOX emissions; of 10.33%. When compared to biodiesel blends, diesel fuel shows a significant increase in the Net Heat Release rate (NHR).


2013 ◽  
Vol 465-466 ◽  
pp. 221-225 ◽  
Author(s):  
Mohd Hafizil Mat Yasin ◽  
Rizalman Mamat ◽  
Abdul Mutalib Leman ◽  
Amir Khalid ◽  
Noreffendy Tamaldin

Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has its drawbacks which are more density and viscosity compared to mineral diesel. Alcohol additives implementation such as ethanol could reduce significantly the density and viscosity of the biodiesel. In this study, biodiesel (20%)-ethanol (5%)-diesel (75%), biodiesel (20%)-methanol (10%)-diesel (70%), biodiesel (20%)-ethanol (15%)-diesel (65%), biodiesel (20%)-ethanol (20%)-diesel (60%) and standard mineral diesel as a baseline fuel are tested in a Mitsubishi 4D68 diesel engine. Those test fuels are investigated under the same operating conditions at three different engine loads; 20%, 40% and 60% at a constant engine speed of 2500 rpm to determine the engine performance, combustion and emission of the diesel engine. Overall, biodiesel-ethanol-diesel blends show higher brake specific fuel consumption than mineral diesel especially at higher ethanol concentration. As ethanol proportions in blends increase, CO emissions increase, while NO emissions are reduced. Also, biodiesel-ethanol blend with 5% ethanol is more effective than other biodiesel-ethanol blends for reducing CO emissions and improve the combustion.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4608
Author(s):  
Jingjing He ◽  
Hao Chen ◽  
Xin Su ◽  
Bin Xie ◽  
Quanwei Li

Polyoxymethylene dimethyl ethers (PODE) are a newly appeared promising oxygenated alternative that can greatly reduce soot emissions of diesel engines. The combustion characteristics of the PODE and diesel blends (the blending ratios of PODE are 0%, 20%, 50% and 100% by volume, respectively) are investigated based on an optical engine under the injection timings of 6, 9, 12 and 15-degree crank angles before top dead center and injection pressures of 100 MPa, 120 MPa and 140 MPa in this study. The results show that both the ignition delay and combustion duration of the fuels decrease with the increasing of PODE ratio in the blends. However, in the case of the fuel supply of the optical engine being fixed, the heat release rate, cylinder pressure and temperature of the blend fuels decrease with the PODE addition due to the low lower heating value of PODE. The addition of PODE in diesel can significantly reduce the integrated natural flame luminosity and the soot formation under all injection conditions. When the proportion of the PODE addition is 50% and 100%, the chemical properties of the blends play a leading role in soot formation, while the change of the injection conditions have an inconspicuous effect on it. When the proportion of the PODE addition is 20%, the blend shows excellent characteristics in a comprehensive evaluation of combustion and soot reduction.


Author(s):  
Joshua A. Bittle ◽  
Jesse K. Younger ◽  
Timothy J. Jacobs

Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or per mass energy content of the fuel). For same torque engine comparisons, the lower heating value translates into a higher brake specific fuel consumption (amount of fuel consumed per unit of power produced). The efficiency at which fuel energy converts into work energy, however, may remain unchanged. In this experimental study, evaluating nine unique engine operating conditions, the brake fuel conversion efficiency (an assessor of fuel energy to work energy efficiency) remains unchanged between 100% petroleum diesel fuel and 100% biodiesel fuel (palm olein) at all conditions, except for high load conditions. Several parameters may affect the brake fuel conversion efficiency, including heat loss, mixture properties, pumping work, friction, combustion efficiency, and combustion timing. This article describes a study that evaluates how the aforementioned parameters may change with the use of biodiesel and petroleum diesel, and how these parameters may result in differences in the brake fuel conversion efficiency.


2021 ◽  
Author(s):  
Randall Boehm ◽  
Zhibin Yang ◽  
David Bell ◽  
John Feldhausen ◽  
Joshua Heyne

A detailed assessment is presented on the calculation and uncertainty of the lower heating value (net heat of combustion) of conventional and sustainable aviation fuels, from hydrocarbon class concentration measurements, reference molecular heats of formation, and the uncertainties of these reference heats of formation. Calculations using this paper’s method and estimations using ASTM D3338 are reported for 17 fuels of diverse compositions and compared against reported ASTM D4809 measurements. All the calculations made by this method and the reported ASTM D4809 measurements agree (i.e., within 95% confidence intervals). The 95% confidence interval of the lower heating value of fuel candidates that are comprised entirely of normal- and iso-alkanes is less than 0.1 MJ/kg by the method described here, while high cyclo-alkane content leads to 95% confidence bands that approach 0.2 MJ/kg. Taking a possible bias into account, the accuracy and precision of the method described in this work could be as high as 0.23 MJ/kg for some samples.


Author(s):  
Ziedonis Miklašēvičs

The methodology in Latvia forest industry provide to determine the quality of energy chips only in long- term storage places before selling. Due to the lack of hard empirical data about the quality parameters of energy chips in different phases of manufacturing process, this research paper consists of: - the identification and analyses of the factors that influenced the values of energy chips quality features such as: bulk density, moisture content, ash content, higher and lower heating value according to actual moisture content and per dry mass of the chips; - the methodology for determination the quality parameters of energy chips by analysis the wood moisture content and by choice the method of the manufacturing of energy chips.


2013 ◽  
Vol 76 ◽  
pp. 356-361 ◽  
Author(s):  
Seyed Reza Hassan-beygi ◽  
Vahideh Istan ◽  
Barat Ghobadian ◽  
Mohammad Aboonajmi

Sign in / Sign up

Export Citation Format

Share Document