scholarly journals Seismic Damage Scenarios Induced by Site Effects of Masonry Clustered Buildings: a South Italy Case Study

2021 ◽  
Author(s):  
A. Formisano ◽  
N. Chieffo
2020 ◽  
Vol 272 ◽  
pp. 105647 ◽  
Author(s):  
Giuseppe Brando ◽  
Alessandro Pagliaroli ◽  
Giulia Cocco ◽  
Francesco Di Buccio

Author(s):  
Bledar Kalemi ◽  
Antonio C. Caputo ◽  
Fabrizio Paolacci

Abstract Earthquakes causes approximately 8% of total accidents in industrial facilities. Although there are several researches in literature pertaining to industrial resilience, none of them provides a modelling framework to quantify the seismic resilience of process plants. This paper presents a methodology for providing a quantitative measure of resilience and business economic losses for the process plants in case of a seismic event. The two main parameters which have utmost influence on the resilience of a process plant are operational capacity and recovery time, so they must be evaluated in proper way. Plant mapping and components vulnerability are the key modelling parameters of plant operational capacity. Exact recovery step functions are introduced based on General Reconstruction Activity Network (GRAN), considering interdependencies between plant components. In order to illustrate the discussed method, a nitric acid plant is set up as a case study. “PRIAMUS” software is used to generate the most probable damage scenarios, assuming the plant is located in seismic region of South Italy, Sicily. Ultimately, recovery curves are constructed for each damaged scenario, and business economic losses are calculated according to direct cost and business interruption. In short, this methodology provides a good estimation of the most critical components and economic losses of a process plant in case of a seismic event.


Author(s):  
Pooria Ebrahimi ◽  
Stefano Albanese ◽  
Leopoldo Esposito ◽  
Daniela Zuzolo ◽  
Domenico Cicchella

Providing safe tap water has been a global concern. Water scarcity, the ever-increasing water demand, temporal variation of water consumption, aging urban water infrastructure and anthropogenic pressure on the water...


2016 ◽  
Vol 75 (20) ◽  
Author(s):  
Giuliano Langella ◽  
Angelo Basile ◽  
Antonello Bonfante ◽  
Florindo Antonio Mileti ◽  
Fabio Terribile

Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 309
Author(s):  
Federico Valerio Moresi ◽  
Mauro Maesano ◽  
Alessio Collalti ◽  
Roy C. Sidle ◽  
Giorgio Matteucci ◽  
...  

Shallow landslides are an increasing concern in Italy and worldwide because of the frequent association with vegetation management. As vegetation cover plays a fundamental role in slope stability, we developed a GIS-based model to evaluate the influence of plant roots on slope safety, and also included a landslide susceptibility map. The GIS-based model, 4SLIDE, is a physically based predictor for shallow landslides that combines geological, topographical, and hydrogeological data. The 4SLIDE combines the infinite slope model, TOPMODEL (for the estimation of the saturated water level), and a vegetation root strength model, which facilitates prediction of locations that are more susceptible for shallow landslides as a function of forest cover. The aim is to define the spatial distribution of Factor of Safety (FS) in steep-forested areas. The GIS-based model 4SLIDE was tested in a forest mountain watershed located in the Sila Greca (Cosenza, Calabria, South Italy) where almost 93% of the area is covered by forest. The sensitive ROC analysis (Receiver Operating Characteristic) indicates that the model has good predictive capability in identifying the areas sensitive to shallow landslides. The localization of areas at risk of landslides plays an important role in land management activities because landslides are among the most costly and dangerous hazards.


Sign in / Sign up

Export Citation Format

Share Document