scholarly journals In vitro rumen methane output of forb species sampled in spring and summer

2012 ◽  
Vol 21 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Peter James Purcell ◽  
Tommy M. Boland ◽  
Martin O'Brien ◽  
Pádraig O'Kiely

The chemical composition, in vitro rumen fermentation variables and methane (CH4) output of a range of common forb species sampled in spring and summer, and grass silage (14 treatments in total), were determined in this study. Dried, milled herbage samples were incubated in an in vitro rumen batch culture with rumen microbial inoculum (rumen fluid) and buffered mineral solution (artificial saliva) at 39 °C for 24 hours. All herbage chemical composition and in vitro rumen fermentation variables were affected (p<0.001) by treatment. Rumex obtusifolius (in spring and summer), Urtica dioica (summer) and Senecio jacobaea (summer) had lower (p<0.05) CH4 outputs relative to feed dry matter incubated compared with grass silage, reflecting their lower extent of in vitro rumen fermentation.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


BioResources ◽  
2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Xianghui Zhao ◽  
Jianming Gong ◽  
Shan Zhou ◽  
Kehui Ouyang ◽  
Xiaozhen Song ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2019 ◽  
Vol 20 (3) ◽  
pp. 155
Author(s):  
Said Mirza Pratama ◽  
Sitti Wajizah ◽  
Anuraga Jayanegara ◽  
Samadi Samadi

Animals are considered as source of protein should be improved their productivity with the minimum cost production. Agro-industrial by products have been used as animal feed to reduce feed cost. The purpose of this study is to evaluate agro-industrial by product in Aceh as potential local feed for ruminant animals based on chemical composition, fiber fraction and in vitro rumen fermentation. There were eight sources of agro-industrial by products (sago residues, coconut meal, soybean-ketchup by product, coffee pulp, cacao pod, sago tree, corncob, and rice brand) which were collected from 3 different locations in Aceh.  All agro-industrial by product samples were dried at 600C for 24 h and ground to pass a 1 mm sieve. Grounded samples were analyzed to determine chemical composition, fiber fractions and in vitro rumen fermentation. Incubation was conducted at temperature 390C for 48 h in water bath with three replicates. Data for in vitro rumen fermentation were statically calculated by using SPSS differences between treatments were stated (P≤0.05) by using Duncan Multiple Range Test (DMRT). The results indicated that agro industrial by product from coconut meal, ketchup residues, coffee by product, cacao by product, and rice brand can be used as source of protein and industrial by product from sago by product, sago tree and corncob can be used as source of energy. Neutral detergent  insoluble  CP (NDICP) and Acid detergent insoluble CP (ADICP)  were relatively high for sago by product, sago tree and rice brand but relatively low for cacao by product and corncob. The value of incubated pH for most feed samples was in the normal range. In vitro dry matter digestibility (IVDMD) and in vitro organic matter  digestibility (IVOMD) were significantly difference (P≤0.05) each agro-industrial by products with the highest for sago and the lowest for coffee by product. In conclusion, agro-industrial by products had a potential feed for ruminant animals both as protein and energy sources. However, feed ingredients with high fiber content and low degradability, further treatments such as physical, chemical and biological treatments were required to improve the feed quality. 


2020 ◽  
Vol 42 ◽  
pp. e48272
Author(s):  
Maikon Figueredo Lemos ◽  
Alexandro Pereira Andrade ◽  
Pedro Henrique Ferreira da Silva ◽  
Camila Oliveira Santos ◽  
Caio Felipe Barros Souza ◽  
...  

The aim of this study was to evaluate nutritional value, fermentation losses, and aerobic stability of elephant grass silage (Pennisetum purpureum Schum.) treated with exogenous fibrolytic enzymes. The experiment was conducted in a completely randomized design with four replicates (experimental silos) and five levels of fibrolytic enzymes (0, 1.5, 3.0, 4.5 and 6.0%). For this, the elephant grass was ensiled at 70 days of age in plastic buckets with 20L capacity. Silos were opened 60 days after sealing. Analyses were made for chemical composition, in vitro dry matter digestibility (IVDMD), effluent losses (EL), gas losses (GL) and dry matter recovery (DMR), as well as the aerobic stability of the silage. Data were analyzed with PROC REG of SAS® University, at 5% probability. There was an increase in IVDMD content (p < 0.0001) and reduction in NDF and ADF contents (p < 0.0001) according to enzyme levels. These results were related to the increase in the degradation of fiber fractions. There were higher EL (p = 0.0062) as a function of enzyme levels and aerobic deterioration after silo opening, at all levels tested. Thus, it can be concluded that the exogenous fibrolytic enzymes change the chemical composition of elephant grass silage, and increase its digestibility and nutritional value. Moreover, when used alone as an additive, fibrolytic enzymes are not able to recover all dry matter of this silage (with effluent and gas losses), and are not able to maintain aerobic stability in the first hours after opening the silos.


2017 ◽  
Vol 42 (4) ◽  
pp. 247 ◽  
Author(s):  
A. Jayanegara ◽  
N. Yantina ◽  
B. Novandri ◽  
E. B. Laconi ◽  
N. Nahrowi ◽  
...  

This experiment was aimed to evaluate chemical composition, in vitro rumen fermentation, digestibility and methane emissions of some insects, i.e. Jamaican field cricket (JFC), mealworm (MW) and black soldier fly larvae age 1 and 2 weeks (BSF1 and BSF2). Insect samples were oven-dried at 60oC for 24 h, and ground to pass a 1 mm sieve. The ground samples were used subsequently for chemical composition determination and in vitro rumen fermentation test. Incubation was carried out in a water bath maintained at 39 ºC for 48 h in three replicates. Results revealed that all insect meals contained high crude protein, i.e. above 40% DM. Proportions of neutral detergent insoluble CP (NDICP) and neutral detergent insoluble CP (ADICP) were high in the insect meals than that of soybean meal (SBM), and these were particularly very high in BSF2. All insect meals had lower IVDMD and IVOMD than that of SBM (P<0.05). All insect meals had lower methane emissions as compared to SBM at 12, 24 and 48 h (P<0.05). It can be concluded that insect meals are potential protein supplements and have low methane emissions in vitro. However, their digestibility is rather low and may limit their utilization.


2012 ◽  
Vol 52 (12) ◽  
pp. 1077 ◽  
Author(s):  
P. J. Purcell ◽  
J. Grant ◽  
T. M. Boland ◽  
D. Grogan ◽  
P. O'Kiely

Grassland swards containing white clover varieties (WCV) may result in lower enteric methane (CH4) output from grazing ruminants than swards of only perennial grass species (PGS) due to differences in their chemical composition and rumen fermentation dynamics. The objectives of the present study were to compare the chemical composition, in vitro rumen fermentation variables and CH4 output per unit of feed for a range of common PGS and WCV harvested in May from simulated grazing regimes, and to determine the effects of binary mixtures of the PGS and WCV on in vitro rumen fermentation variables and CH4 output, using a batch-culture technique. Four PGS (perennial ryegrass, cocksfoot, meadow fescue and timothy) and three WCV (Aran, Chieftain and Crusader) were incubated as sole substrates or as part of binary mixtures (PGS : WCV ratios of 0 : 1, 0.25 : 0.75, 0.5 : 0.5, 0.75 : 0.25 and 1 : 0) for 24 h at 39°C with buffered rumen fluid. All WCV had lower (P < 0.001) CH4 output per unit of apparent DM disappeared (aDMD; mean value across WCV (s.e.m.) of 27.0 (1.35) mL/g aDMD v. 36.1 (0.90) mL/g aDMD across PGS) during the in vitro rumen incubation than did all PGS. The WCV also had lower CH4 output per unit of total volatile fatty acids (corresponding values of 0.147 (0.0090) v. 0.199 (0.0073) mmol/mmol total volatile fatty acid output) and per unit of total gas produced (0.118 (0.0022) v. 0.153 (0.0024) mmol/mmol total gas produced) than did the PGS. In addition, Aran and Crusader had lower (P < 0.001) CH4 output per unit of feed DM incubated than did all PGS. There were synergistic associative effects (i.e. where the response was greater for the mixtures than the arithmetic calculation using the responses for PGS and WCV alone; P < 0.05) of mixing the PGS and WCV in binary combinations on all CH4 output variables.


Sign in / Sign up

Export Citation Format

Share Document