scholarly journals Effect of hot air and freeze drying on the volatile compounds of dill (Anethum graveolens L.) herb

1985 ◽  
Vol 57 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Rainer Huopalahti ◽  
Eila Kesälahti ◽  
Reino Linko

Volatile compounds of fresh, hot air dried and freeze dried dill (Anethum graveolens L.) herb were studied by gas chromatography-mass spectrometry. Of the 25 volatile components identified, 16 the most abundant compounds were analysed quantitatively. The major primary aroma compounds were α-phellandrene, 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran,β-phellandrene, limonene, α-pinene, p-cymene and myristicin. Severe loss of these components occured during the drying of dill. E.g. the retention of the benzofuranoid, the most important aroma component of the dill herb, was from trace to 1.3 % in hot air dried samples and 3.5—20 % in freeze dried samples. During the drying secondary aroma compounds are formed consisting over 50 % of the total volatiles. Among these phytadienes, especially neophytadiene, were the major components. The best result was obtained by freeze drying, but the product contained only one quarter of the total aroma compounds of the fresh dill herb.

2020 ◽  
Vol 14 (3) ◽  
pp. 359-368
Author(s):  
Ruyi Sha ◽  
Haoan Fan ◽  
Zhenzhen Wang ◽  
Gaojian Wang ◽  
Yanli Cui ◽  
...  

A method based on solid phase microextraction coupled with gas chromatography mass spectrometry was developed for volatile profiling fermented perilla leaves jiaosu (PFJ) during fermentation. Five fibers were firstly evaluated by the total peak areas and the number of volatile compounds. Secondly, a Plackett-Burman design was applied to screen for seven independent variables selected in literature. Three significant variables (extraction time, extraction temperature and equilibrium time) were therefore selected for the following optimization studies. A Box-Behnken design combined with a steepest ascent was then used to optimize the significant factors. Under optimal conditions, the changes of volatile profiles of PFJ at 7, 14, 21, 28, 91 and 140 d were analyzed. A total of fifty-one volatile compounds were identified, and alcohols (68.12–78.94%) were the main volatile components in PFJ, followed by methoxy-phenolic compounds (4.67–5.48%). Perilla alcohol and trans-Shisool were the major constituents during spontaneous fermentation, which accounted for 16.14–30.66% and 19.95–24.52%, respectively. The results showed that PFJ fermented into a health probiotic product with characteristic flavour and functional volatile compounds.


2020 ◽  
Vol 9 (4) ◽  
pp. 30
Author(s):  
Fadwa Al-Taher ◽  
Boris Nemzer

The objective of this study was to determine a method for the identification of aroma volatile compounds in freeze-dried (FD) strawberries and raspberries for quality purposes. The aroma profile was examined using headspace solid-phase micro-extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). FD strawberries and raspberries were extracted at four different times (10,15, 20 and 30 min) and three different temperatures (40 °C, 60 °C and 80 °C) using a SPME fiber coated with 50/30 µm divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR-PDMS) to determine optimum recoveries for aroma volatile compounds. The DVB/CAR-PDMS SPME fiber showed the best extraction of aroma volatile compounds from strawberry and raspberry at 60°C for 15 min. Twenty-nine volatile compounds were identified from the strawberry samples and 20 from the raspberry samples, including terpenes, aldehydes, esters, acids and alcohols. Select aroma compounds in FD strawberries and raspberries were quantitated using SPME and GC-MS. It is important to determine the desirable aroma active compounds in freeze-dried strawberries and raspberries for quality uses since they are becoming popular commercially.


2021 ◽  
pp. 68-75
Author(s):  
Jin Piao ◽  
Soon Sung Lim ◽  
Haeng Hoon Kim ◽  
Sook Young Lee ◽  
Sang Un Park

A total of 99 different volatile compounds were detected through Gas Chromatography-Mass Spectrometry (GC-MS) from three species of Atractylodes, namely Atractylodes lancea, Atractylodes japonica, and Atractylodes chinensis. Thirteen-volatile flavor compounds i.e., acid, alcohol, aldehyde, alkane, alkene, alkyne, ester, ketone, monoterpene, oxygenated monoterpene, sesquiterpene, oxygenated sesquiterpene, and oxygenated triterpenoid detected from different species of Atractylodes. It was observed that all the species contained 38 common compounds, while A. lancea contained 7 unique compounds, A. japonica has 4 unique compounds, and A. chinensis hold 6 compounds not detected in the other extracts. In addition, essential oils from A. lancea and A. japonica possessed 11 compounds in common, and A. lancea and A. chinensis possessed 19 compounds in common. The remaining 14 compounds were detected only in A. japonica and A. chinensis. The total content of all components in the species was comparable, with 82.528%, 81.766%, and 81.799% of volatile components being detected for A. lancea, A. japonica, and A. chinensis, respectively. Curzerene was found to be the most predominant compound in both A. lancea (14.1%) and A. chinensis (16.7%), while murolan-3,9(11)-diene-10-peroxy was found predominantly in A. japonica (16.8%). The present study suggests that the identified volatile compounds may possess important biological properties, and could be suitable for application in both oriental medicines and the pharmaceutical industry.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Junjie Xia ◽  
Zili Guo ◽  
Sheng Fang ◽  
Jinping Gu ◽  
Xianrui Liang

Burdock (Arctium lappa L.) is one of the nutritional foods widely planted in many countries. Dried burdock root (BR) is available as a herbal tincture and tea in many Asian countries with good flavor and taste. In this study, the volatile components in dried BR were identified and the effects of different drying methods on the volatile components were investigated by HS-GC-MS method. A total of 49 compounds were identified. Different drying methods including hot-air drying (HD, at 50, 60, 70, and 80 °C), vacuum drying (VD, at 50, 60, 70, and 80 °C), sunlight drying (SD), natural drying (ND), and vacuum freeze drying (VFD) were evaluated by HS-GC-MS-based metabolomics method. Results showed that different drying methods produced different effects on the volatile compounds. It was observed that 2,3-pentanedione, 1-(1H-pyrrol-2-yl)-ethanone, furfural, and heptanal were detected at higher concentrations in HD 80 and VD 70. The traditional HD and SD methods produced more flavor substances than VFD. The BR treated by the VFD method could maintain the shape of the fresh BR pieces while HD50 and VD80 methods could maintain the color of fresh BR pieces. These findings could help better understand the flavor of the corresponding processed BR and provide a guide for the drying and processing of BR tea.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3305 ◽  
Author(s):  
Tao Feng ◽  
Mengzhu Shui ◽  
Shiqing Song ◽  
Haining Zhuang ◽  
Min Sun ◽  
...  

The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC–MS) and gas chromatography with flame photometric detection (GC-FPD). The results showed that 44, 43 and 44 volatile compounds were detected in T1, T2 and T3 samples, respectively. In addition, 9, 10 and 9 sulfur compounds were identified in three samples by GC-FPD, respectively. Combining physicochemical and sensory properties, T1 presented fatty, green and rotten cabbage odor; T2 exhibited mushroom, sulfuric and musty odor notes; T3 had nutty, floral and roasted potato odor. Dimethyl sulfide, 3-methylbutanal, dimethyl disulfide, 3-octanone, bis(methylthio) methane, octanal, 1-octen-3-one, 1-octen-3-ol and benzeneacetaldehyde played indispensable roles in the overall aroma of three truffles. Finally, based on quantitative concentration in T1, odorous compounds (OAV) > 1 were mixed to recombine aroma, demonstrating that these key aroma compounds based on OAV can successfully recombine pretty similar aroma of each variety.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2212
Author(s):  
Tung Thanh Diep ◽  
Michelle Ji Yeon Yoo ◽  
Chris Pook ◽  
Saeedeh Sadooghy-Saraby ◽  
Abhishek Gite ◽  
...  

Tamarillo is a nutrient-dense fruit with a unique aroma from its volatile compounds (VCs). In this study, we aimed to compare the volatile profiles: (i) of fresh and freeze-dried tamarillo; (ii) detected using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD–GC–MS) and Solid-Phase MicroExtraction–Gas Chromatography-Mass Spectrometry (SPME–GC–MS); (iii) of freeze-dried pulp and peel of New Zealand grown tamarillo. The possible antibacterial activity of freeze-dried tamarillo extracts was also investigated. We show that freeze-drying maintained most of the VCs, with some being more concentrated with the loss of water. The most abundant VC in both fresh and freeze-dried tamarillo was hexanoic acid methyl ester for pulp (30% and 37%, respectively), and (E)-3-Hexen-1-ol for peel (36% and 29%, respectively). With the use of TD–GC–MS, 82 VCs were detected for the first time, when compared to SPME–GC–MS. Methional was the main contributor to the overall aroma in both peel (15.4 ± 4.2 μg/g DW) and pulp (118 ± 8.1 μg/g DW). Compared to water as the control, tamarillo extracts prepared by water and methanol extraction showed significant antibacterial activity against E. coli, P. aeruginosa, and S. aureus with zone of inhibition of at least 13.5 mm. These results suggest that freeze-dried tamarillo has a potential for use as a natural preservative to enhance aroma and shelf life of food products.


Author(s):  
Rini Rini ◽  
Daimon Syukri ◽  
Fauzan Azima

Rendang is a traditional-specific food in Indonesia. Rendang is generally made with beef, coconut milk, and spices. There are two types of rendang according to its time processing. Rendang “kalio” is a final product of rendang that needs a short heating period while dried rendang is produced by the longer heating period. In the present study, the profile of the volatile compounds that most obtained from spices was analyzed by gas chromatography-mass spectrometry (GC-MS) to characterize the influence of the cooking period on the flavor characteristic of two available types of rendang. There were dozens of volatile compounds identified including carboxylic, aromatic, carbonyl, and alcohols where carboxylic and aromatics were the predominant volatile fractions. The results indicated that the cooking period affected the profile of volatile compounds between "kalio" rendang and dried rendang. Carboxylic and aromatics were less in the dried rendang compared to the rendang “kalio” where others were opposites. The increase of carbonyls and alcohol during the cooking process has suggested can play a crucial role in the flavor of dried rendang.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Yinzheng Ma ◽  
Yingying Wen ◽  
Jinping Chen ◽  
Yunxia Zhang ◽  
Haiying Zhang ◽  
...  

AbstractA rapid and sensitive headspace gas chromatography-mass spectrometry (HS-GC–MS) method was established for the determination of benzyl isothiocyanate (BITC) in the peel, pulp, and seeds of Carica papaya Linn. Tween 80 solution with a concentration of 0.002% (w/v) was chosen as a headspace medium for solving the poor solubility of BITC in water without using organic solvents and ensuring high headspace efficiencies. Extraction parameters had been evaluated and optimized by using an orthogonal design with an OA9(34) table. Optimal headspace conditions were obtained when vials were equilibrated at 80 °C for 20 min at a stirring speed of 375 rpm. The calibration curve obtained by using GC–MS was linear in a concentration range of 10–320 ng/mL. The recoveries of peel, pulp, and seeds ranged from 97.3 to 100.6% with RSDs less than 3.0%. The method is simple, rapid, sensitive, and environmentally friendly. It is suitable for analyzing BITC in papaya fruit and is expected to have important application potential in the extraction of water-insoluble volatile components in foods, plants, medicines, and other samples.


Sign in / Sign up

Export Citation Format

Share Document