scholarly journals Application of K-Nearest Neighbor Algorithm on Classification of Disk Hernia and Spondylolisthesis in Vertebral Column

2019 ◽  
Vol 2 (1) ◽  
pp. 57 ◽  
Author(s):  
Irma Handayani

Vertebral column as a part of backbone has important role in human body. Trauma in vertebral column can affect spinal cord capability to send and receive messages from brain to the body system that controls sensory and motoric movement. Disk hernia and spondylolisthesis are examples of pathologies on the vertebral column. Research about pathology or damage bones and joints of skeletal system classification is rare whereas the classification system can be used by radiologists as a second opinion so that can improve productivity and diagnosis consistency of the radiologists. This research used dataset Vertebral Column that has three classes (Disk Hernia, Spondylolisthesis and Normal) and instances in UCI Machine Learning. This research applied the K-NN algorithm for classification of disk hernia and spondylolisthesis in vertebral column. The data were then classified into two different but related classification tasks: “normal” and “abnormal”. K-NN algorithm adopts the approach of data classification by optimizing sample data that can be used as a reference for training data to produce vertebral column data classification based on the learning process. The results showed that the accuracy of K-NN classifier was 83%. The average length of time needed to classify the K-NN classifier was 0.000212303 seconds.

2020 ◽  
Vol 202 ◽  
pp. 16005
Author(s):  
Chashif Syadzali ◽  
Suryono Suryono ◽  
Jatmiko Endro Suseno

Customer behavior classification can be useful to assist companies in conducting business intelligence analysis. Data mining techniques can classify customer behavior using the K-Nearest Neighbor algorithm based on the customer's life cycle consisting of prospect, responder, active and former. Data used to classify include age, gender, number of donations, donation retention and number of user visits. The calculation results from 2,114 data in the classification of each customer’s category are namely active by 1.18%, prospect by 8.99%, responder by 4.26% and former by 85.57%. System accuracy using a range of K from K = 1 to K = 20 produces that the highest accuracy is 94.3731% at a value of K = 4. The results of the training data that produce a classification of user behavior can be used as a Business Intelligence analysis that is useful for companies in determining business strategies by knowing the target of optimal market.


SinkrOn ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 42
Author(s):  
Rizki Muliono ◽  
Juanda Hakim Lubis ◽  
Nurul Khairina

Higher education plays a major role in improving the quality of education in Indonesia. The BAN-PT institution established by the government has a standard of higher education accreditation and study program accreditation. With the 4.0-based accreditation instrument, it encourages university leaders to improve the quality and quality of their education. One indicator that determines the accreditation of study programs is the timely graduation of students. This study uses the K-Nearest Neighbor algorithm to predict student graduation times. Students' GPA at the time of the seventh semester will be used as training data, and data of students who graduate are used as sample data. K-Nearest Neighbor works in accordance with the given sample data. The results of prediction testing on 60 data for students of 2015-2016, obtained the highest level of accuracy of 98.5% can be achieved when k = 3. Prediction results depend on the pattern of data entered, the more samples and training data used, the calculation of the K-Nearest Neighbor algorithm is also more accurate.


2020 ◽  
Vol 8 (3) ◽  
pp. 246-254
Author(s):  
Agus Subhan Akbar ◽  
R. Hadapiningradja Kusumodestoni

Hotel occupancy rates are the most important factor in hotel business management. Prediction of the rates for the next few months determines the manager's decision to arrange and provide all the needed facilities. This study performs the optimization of lag parameters and k values of the k-Nearest Neighbor algorithm on hotel occupancy history data. Historical data were arranged in the form of supervised training data, with the number of columns per row according to the lag parameter and the number of prediction targets. The kNN algorithm was applied using 10-fold cross-validation and k-value variations from 1-30. The optimal lag was obtained at intervals of 14-17 and the optimal k at intervals of 5-13 to predict occupancy rates of 1, 3, 6, 9, and 12 months later. The obtained k-value does not follow the rule at the square root of the number of sample data.


2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Ni Kadek Sukma Putri Rahayu ◽  
I Komang Ari Mogi

The heart is an important organ that exists in the human body. The main function of the heart is to pump blood throughout the body through blood vessels. The WHO states that as many as 7.3 million people die from heart disease. In this study heart disease will be classified using the K-Nearest Neighbor algorithm. K-Nearest Neighbor algorithm is a classification algorithm based on the distance from data testing against training data with a pre-defined number of k. The results were obtained from performance measurements for the classification of heart disease with the K-Nearest Neighbor algorithm measured using the K-Fold Cross Validation algorithm, from an accuracy rate of 65.89%, a precision level of 66.27%, and a recall of 74.67%.


2015 ◽  
Vol 1 (4) ◽  
pp. 270
Author(s):  
Muhammad Syukri Mustafa ◽  
I. Wayan Simpen

Penelitian ini dimaksudkan untuk melakukan prediksi terhadap kemungkian mahasiswa baru dapat menyelesaikan studi tepat waktu dengan menggunakan analisis data mining untuk menggali tumpukan histori data dengan menggunakan algoritma K-Nearest Neighbor (KNN). Aplikasi yang dihasilkan pada penelitian ini akan menggunakan berbagai atribut yang klasifikasikan dalam suatu data mining antara lain nilai ujian nasional (UN), asal sekolah/ daerah, jenis kelamin, pekerjaan dan penghasilan orang tua, jumlah bersaudara, dan lain-lain sehingga dengan menerapkan analysis KNN dapat dilakukan suatu prediksi berdasarkan kedekatan histori data yang ada dengan data yang baru, apakah mahasiswa tersebut berpeluang untuk menyelesaikan studi tepat waktu atau tidak. Dari hasil pengujian dengan menerapkan algoritma KNN dan menggunakan data sampel alumni tahun wisuda 2004 s.d. 2010 untuk kasus lama dan data alumni tahun wisuda 2011 untuk kasus baru diperoleh tingkat akurasi sebesar 83,36%.This research is intended to predict the possibility of new students time to complete studies using data mining analysis to explore the history stack data using K-Nearest Neighbor algorithm (KNN). Applications generated in this study will use a variety of attributes in a data mining classified among other Ujian Nasional scores (UN), the origin of the school / area, gender, occupation and income of parents, number of siblings, and others that by applying the analysis KNN can do a prediction based on historical proximity of existing data with new data, whether the student is likely to complete the study on time or not. From the test results by applying the KNN algorithm and uses sample data alumnus graduation year 2004 s.d 2010 for the case of a long and alumni data graduation year 2011 for new cases obtained accuracy rate of 83.36%.


2020 ◽  
Vol 1 (1) ◽  
pp. 17-21
Author(s):  
Steve Oscar ◽  
◽  
Mohammed Nazim Uddin ◽  

Modern life is becoming more linked to our devices, and work is being done in a more regulated way. As life became more complicated, it is becoming challenging to keep track of human health and fitness, leading to unexpected illnesses and diseases. Moreover, a lack of activity monitoring and corresponding reminders is preventing the adoption of a healthier lifestyle. This research provides a practical approach for identifying Human Activity by using accelerometer data obtained from wearable devices. The model automatically finds patterns among 33 different physical exercises such as running, rowing, cycling, jogging, etc. and correctly identifies them. The principal component analysis algorithm was used on the statistical features to make the system more robust. Classification of the physical exercise was performed on the reduced features using WEKA. The overall accuracy of 85.51% was obtained using the 10-Fold Cross-Validation method and K nearest Neighbor Algorithm while 84% accuracy for Random Forest. The accuracy obtained was better than previous models and could improve recognition systems in monitoring user activity more precisely.


Sign in / Sign up

Export Citation Format

Share Document