scholarly journals Experimental Study of the Effect of Misalignment on Rolling Element Bearing

2021 ◽  
Vol 6 (7) ◽  
pp. 87-90
Author(s):  
Mohsin H. Albdery ◽  
Istvan Szabo

Any single machine rotary component in the process could result in downtime costs. It is necessary to monitor the overall machine health while it is in use. Bearing failure is one of the primary causes of machine breakdown in industry at high and low speeds. A vibration signature evaluation has historically determined misalignments in shafting systems. These misalignments are also responsible for the bearing increase in temperature. The purpose of this work is to undertake a comparative study to obtain the reliability of the effect of the amount of misalignment on bearing by using thermography measurement. An experimental study was performed in this paper to indicate the existence of machine misalignment at an early stage by measuring the bearing temperature using a thermal imaging camera. The effects of load, velocity, and misalignment on the bearings and their temperature increase have been investigated. The test bench's rolling-element bearing is an NTN UCP213-208 pillow block bearing. It has been observed that by tracking the change of temperature in bearings could lead to misalignment detection and the effect of the amount of misalignment on it.

2013 ◽  
Vol 1 (1) ◽  
pp. 15-17 ◽  
Author(s):  
R.K. Upadhyay ◽  
L.A. Kumaraswamidhas ◽  
Md.Sikandar Azam

2002 ◽  
Vol 124 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Har Prashad

The diagnosis and cause analysis of rolling-element bearing failure have been well studied and established in literature. Failure of bearings due to unforeseen causes were reported as: puncturing of bearings insulation; grease deterioration; grease pipe contacting the motor base frame; unshielded instrumentation cable; the bearing operating under the influence of magnetic flux, etc. These causes lead to the passage of electric current through the bearings of motors and alternators and deteriorate them in due course. But, bearing failure due to localized electrical current between track surfaces of races and rolling-elements has not been hitherto diagnosed and analyzed. This paper reports the cause of generation of localized current in presence of shaft voltage. Also, it brings out the developed theoretical model to determine the value of localized current density depending on dimensional parameters, shaft voltage, contact resistance, frequency of rotation of shaft and rolling-elements of a bearing. Furthermore, failure caused by flow of localized current has been experimentally investigated.


2020 ◽  
pp. 095745652094827
Author(s):  
Surajkumar G Kumbhar ◽  
Edwin Sudhagar P ◽  
RG Desavale

The marvelous uniqueness of vibration responses of faulty roller bearings can be simply observed through its vibration signature. Therefore, vibration analysis has been claimed as an effective tool not only for primitive detection but also for subsequent analysis. The dynamic behavior of roller bearings has been investigated by systematic modeling of system and its validation under diverse operating conditions. This article presents an overview of imperative marks in the development of dynamic modeling of rolling-element bearing, which especially predicted vibration responses of damaged bearings. This study aims to address dimensional analysis; a new and imperative way to model the dynamic behavior of rolling-element bearings and their real-time performance in a rotor-bearing system. The findings are described with influential advantages over earlier research to pinpoint the intention behind its development. A literature summary is trailed by remarkable findings and future directions for research.


Sign in / Sign up

Export Citation Format

Share Document