scholarly journals Identification of fault size of rolling element bearing on outer race from vibration signature analysis

2021 ◽  
Vol 1921 ◽  
pp. 012087
Author(s):  
V M Bhojawala ◽  
D V Patel ◽  
K M Patel
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guang-Quan Hou ◽  
Chang-Myung Lee

Fault diagnosis and failure prognostics for rolling element bearing are helpful for preventing equipment failure and predicting the remaining useful life (RUL) to avoid catastrophic failure. Spall size is an important fault feature for RUL prediction, and most research work has focused on estimating the fault size under constant speed conditions. However, estimation of the defect width under time-varying speed conditions is still a challenge. In this paper, a method is proposed to solve this problem. To enhance the entry and exit events, the edited cepstrum is used to remove the determined components. The preprocessed signal is resampled from the time domain to the angular domain to eliminate the effect of speed variation and measure the defect size of a rolling element bearing on outer race. Next, the transient impulse components are extracted by local mean decomposition. The entry and exit points when the roller passes over the defect width on the outer race were identified by further processing the extracted signal with time-frequency analysis based on the continuous wavelet transform. The defect size can be calculated with the angle duration, which is measured from the identified entry and exit points. The proposed method was validated experimentally.


2007 ◽  
Vol 347 ◽  
pp. 265-270
Author(s):  
Jerome Antoni ◽  
Roger Boustany

Rolling-element bearing vibrations are random cyclostationary, that is they exhibit a cyclical behaviour of their statistical properties while the machine is operating. This property is so symptomatic when an incipient fault develops that it can be efficiently exploited for diagnostics. This paper gives a synthetic but comprehensive discussion about this issue. First, the cyclostationarity of bearing signals is proved from a simple phenomenological model. Once this property is established, the question is then addressed of which spectral quantity can adequately characterise such vibration signals. In this respect, the cyclic coherence - and its multi-dimensional extension in the case of multi-sensors measurements -- is shown to be twice optimal: first to evidence the presence of a fault in high levels of background noise, and second to return a relative measure of its severity. These advantages make it an appealing candidate to be used in adverse industrial environments. The use and interpretation of the proposed tool are then illustrated on actual industrial measurements, and a special attention is paid to describe the typical "cyclic spectral signatures" of inner race, outer race, and rolling-element faults.


2021 ◽  
Vol 6 (7) ◽  
pp. 87-90
Author(s):  
Mohsin H. Albdery ◽  
Istvan Szabo

Any single machine rotary component in the process could result in downtime costs. It is necessary to monitor the overall machine health while it is in use. Bearing failure is one of the primary causes of machine breakdown in industry at high and low speeds. A vibration signature evaluation has historically determined misalignments in shafting systems. These misalignments are also responsible for the bearing increase in temperature. The purpose of this work is to undertake a comparative study to obtain the reliability of the effect of the amount of misalignment on bearing by using thermography measurement. An experimental study was performed in this paper to indicate the existence of machine misalignment at an early stage by measuring the bearing temperature using a thermal imaging camera. The effects of load, velocity, and misalignment on the bearings and their temperature increase have been investigated. The test bench's rolling-element bearing is an NTN UCP213-208 pillow block bearing. It has been observed that by tracking the change of temperature in bearings could lead to misalignment detection and the effect of the amount of misalignment on it.


Author(s):  
Fazhong Li ◽  
Zengshui He ◽  
Lin Zhang ◽  
Anbo Ming ◽  
Yongsheng Yang

The accurate description of acoustic emission signals produced by the localized fault of a rolling element bearing plays an important role in its feature extraction and analysis. This paper analyzes the excitation mechanisms and develops the analytical model of acoustic emission signals produced when the rolling element bearing passes across the localized fault on the inner or outer race. Based on the analytical model, the spectral characteristics are discussed substantially. Simulations and experiments are carried out to validate the efficacy of the model developed in the paper. The experimental results show that the response signal thus produced has two parts. The first one is produced by the entry of the rolling element bearing, while the other is produced by the departure of the rolling element bearing. The energy of both parts is concentrated around the resonance frequency of the acoustic emission transducer. Generally, the interval of adjacent acoustic emission events is not equivalent to each other and the corresponding spectrum is continuous in the high frequency band.


Sign in / Sign up

Export Citation Format

Share Document