scholarly journals Channel Path-Loss Measurement and Modeling in Wireless Data Network (IEEE 802.11n) Using Artificial Neural Network

Author(s):  
Olasoji Y. Olajide ◽  
Samson Musa Yerima

Careful network planning has become increasingly critical with the rising deployment, coverage, and congestion of wireless local area networks (WLANs).This paper  investigates and determine the Path-loss exponent value for the ubiquitous wireless local area network at the Federal University Oye-Ekiti for the line of sight and non-line of sight (N-LOS). Aside this, the paper also models the wireless network using artificial neural network (ANN) technology by training some neurons based on data collected from a drive-test. The proposed ANN model performed with accuracy and is offered as a simple, yet strong predictive model for network planning – having both speed and accuracy. Results show, that for the area under study, Oye Campus has a higher   standard deviation of 5.76dBm as against ikole Campus with 1.44dBm, this is because of dense vegetation at Oye Campus. In view of this, the paper provides a predictive site survey for rapid wireless Access point deployment.

2016 ◽  
Vol 3 (1) ◽  
pp. 31-39
Author(s):  
F Ammar ◽  
Hanafi Hanafi

WiFi bekerja pada band 2,4 GHz dan 5 GHz. Standar WiFi yang bekerja pada frekuensi ini antara lain IEEE802.11g dan IEEE802.11a. Pada penelitian ini dilakukan pengukuran terhadap transfer rate download dan upload data dengan standar IEEE802.11g dan IEEE802.11a. Pengukuran dilakukan pada kanal Line of Sight (LOS), menggunakan dua buah laptop yang dihubungkan dengan Access Point (AP) standar IEEE802.11g dan IEEE802.11a.  Hasil penelitian diperoleh, pada standar IEEE802.11g, transfer rate download dan upload data tertinggi 2.662,54.KB/s dan 2.549,60 KB/s, dan terendah 484,50.KB/s dan 477,40 KB/s, sedangkan pada standar IEEE802.11a, transfer rate download dan upload data tertinggi 8.104,68 KB/s dan 5.744,24 KB/s, dan terendah 872,24 KB/s dan 465,38.KB/s. Pada standar IEEE802.11g, transfer rate download dan upload data pada sinyal terendah hingga di bawah 35% dan 30%, dari transfer rate download dan upload data tertinggi. Pada standar IEEE802.11a, transfer rate download dan upload data pada kualitas sinyal terendah hingga di bawah 20% dan 30%, dari transfer rate download dan upload data tertinggi. Kemampuan transfer rate download data Standar IEEE802.11a, 2–3 kali lebih baik pada kondisi kualitas sinyal tertinggi, dan tidak lebih dari 2 kali pada kondisi kualitas sinyal terendah, dibandingkan kemampuan transfer rate download data standar IEEE802.11g. Kemampuan transfer rate upload data Standar IEEE802.11a, 1,4–3 kali lebih baik pada kondisi kualitas sinyal tertinggi, dan 1-3 kali lebih baik pada kondisi kualitas sinyal terendah, dibandingkan kemampuan transfer rate upload data standar IEEE802.11g.


2019 ◽  
Vol 7 (9) ◽  
pp. 290 ◽  
Author(s):  
Brennan Yamamoto ◽  
Allison Wong ◽  
Peter Joseph Agcanas ◽  
Kai Jones ◽  
Dominic Gaspar ◽  
...  

The effect of the maritime environment on radio frequency (RF) propagation is not well understood. In this work, we study the propagation of ad hoc 2.4 GHz and 5 GHz wireless local area network systems typically used for near-shore operation of unmanned surface vehicles. In previous work, maritime RF propagation performance is evaluated by collecting RSSI data over water and comparing it against existing propagation models. However, the multivariate effect of the maritime environment on RF propagation means that these single-domain studies cannot distinguish between factors unique to the maritime environment and factors that exist in typical terrestrial RF systems. In this work, we isolate the effect of the maritime environment by collecting RSSI data over land and over seawater at two different frequencies and two different ground station antenna heights with the same physical system in essentially the same location. Results show that our 2.4 GHz, 2 m antenna height system received a 2 to 3 dBm path loss when transitioning from over-land to over-seawater (equivalent to a 25 to 40% reduction in range); but increasing the frequency and antenna height to 5 GHz, 5 m respectively resulted in no meaningful path loss under the same conditions; this reduction in path loss by varying frequency and antenna height has not been demonstrated in previous work. In addition, we studied the change in ground reflectivity coefficient, R , when transitioning from over-land to over-seawater. Results show that R remained relatively constant, −0.49 ≤ R ≤ −0.45, for all of the over-land experiments; however, R demonstrated a frequency dependence during the over-seawater experiments, ranging from −0.39 ≤ R ≤ −0.33 at 2.4 GHz, and −0.51 ≤ R ≤ −0.50 at 5 GHz.


2020 ◽  
pp. 002029402096424
Author(s):  
Imran Ullah Khan ◽  
Tariq Ali ◽  
Zahid Farid ◽  
Edgar Scavino ◽  
Mohd Amiruddin Abd Rahman ◽  
...  

In indoor environments, accurate location or positioning becomes an essential requirement, driven by the need for autonomous moving devices, or to identify the position of people in large spaces. Single technology schemes which use WiFi and Bluetooth are affected by fading effects as well as by signal noise, providing inaccuracies in location estimation. Hybrid locating or positioning schemes have been used in indoor situations and scenarios in order to improve the location accuracy. Hence, this paper proposes a hybrid scheme (technique) to implement fingerprint-based indoor positioning or localization, which uses the Received Signal Strength (RSS) information from available Wireless Local Area Network (WLAN) access points as well as Wireless Sensor Networks (WSNs) technologies. Our approach consists of performing a virtual tessellation of the indoor surface, with a set of square tiles encompassing the whole area. The model uses an Artificial Neural Network (ANN) approach for position estimate, in which related RSS is associated to a 1 m × 1 m tile. The ANN was trained to match the RSS signal strength to the corresponding tile. Experimental results indicate that the average distance error, based on tile identification accuracy, is 0.625 m from tile-to-tile, showing a remarkable improvement compared to previous approaches.


Radio Science ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 544-564 ◽  
Author(s):  
H. A. Obeidat ◽  
R. Asif ◽  
N. T. Ali ◽  
Y. A. Dama ◽  
O. A. Obeidat ◽  
...  

Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2018 ◽  
Author(s):  
Kiramat

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communications. Maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). This document highlights the main features of IEEE 802.11n variant such as MIMO, frame aggregation and beamforming along with the problems in this variant and their solutions


Sign in / Sign up

Export Citation Format

Share Document