scholarly journals PV Solar-Optimal Maximum Power Search using a Modified P&O Technique

2017 ◽  
Vol 2 (5) ◽  
pp. 13
Author(s):  
Mohamed Salama Ebrahim ◽  
Adel M. Sharaf ◽  
Ahmed M. Atallah ◽  
Adel Sedky Emarah

Smart Grid- PV system interface requires power electronic converter interface and robust optimal controller to ensure maximum solar energy utilization. This paper presents a new Controller based on an optimized search algorithm for maximum power point tracking controller performance using a modified Perturb and Observe P&O Algorithm for a smart grid connected PV DC-AC interface system. The modified P & O method is based on dividing the change of the power into three distinct zones with assigned zone- duty cycle ratio of the Chopper converter (D) has an initial preset value. The feasibility of the proposed method is easily implemented using proportional plus integral and fuzzy logic controllers. The controllers are assumed to control the active output power through adjusting of the dc bus voltage as well as the reactive power given to the ac smart grid network. Digital simulation results of a comparison with conventional P&O approach reflects the fast conversion and dynamic superiority of the new algorithm even under both uniform and partial shading conditions. Furthermore, the active and reactive output powers are regulated at the inverter interface with smart grid.

2021 ◽  
Vol 13 (5) ◽  
pp. 2656
Author(s):  
Ahmed G. Abo-Khalil ◽  
Walied Alharbi ◽  
Abdel-Rahman Al-Qawasmi ◽  
Mohammad Alobaid ◽  
Ibrahim M. Alarifi

This work presents an alternative to the conventional photovoltaic maximum power point tracking (MPPT) methods, by using an opposition-based learning firefly algorithm (OFA) that improves the performance of the Photovoltaic (PV) system both in the uniform irradiance changes and in partial shading conditions. The firefly algorithm is based on fireflies’ search for food, according to which individuals emit progressively more intense glows as they approach the objective, attracting the other fireflies. Therefore, the simulation of this behavior can be conducted by solving the objective function that is directly proportional to the distance from the desired result. To implement this algorithm in case of partial shading conditions, it was necessary to adjust the Firefly Algorithm (FA) parameters to fit the MPPT application. These parameters have been extensively tested, converging satisfactorily and guaranteeing to extract the global maximum power point (GMPP) in the cases of normal and partial shading conditions analyzed. The precise adjustment of the coefficients was made possible by visualizing the movement of the particles during the convergence process, while opposition-based learning (OBL) was used with FA to accelerate the convergence process by allowing the particle to move in the opposite direction. The proposed algorithm was simulated in the closest possible way to authentic operating conditions, and variable irradiance and partial shading conditions were implemented experimentally for a 60 [W] PV system. A two-stage PV grid-connected system was designed and deployed to validate the proposed algorithm. In addition, a comparison between the performance of the Perturbation and Observation (P&O) method and the proposed method was carried out to prove the effectiveness of this method over the conventional methods in tracking the GMPP.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


2018 ◽  
Vol 7 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Afef Badis ◽  
Mohamed Habib Boujmil ◽  
Mohamed Nejib Mansouri

This article concerns maximizing the energy reproduced from the photovoltaic (PV) system, ensured by using an efficient Maximum Power Point Tracking (MPPT) process. The process should be fast, rigorous and simple for implementation because the PV characteristics are extremely affected by fast changing conditions and Partial Shading (PS). PV systems are popularly known to have many peaks (one Global Peak (GP) and several local peaks). Therefore, the MPPT algorithm should be able to accurately detect the unique GP as the maximum power point (MPP), and avoid any other peak to mitigate the effect of (PS). Usually, with no shading, nearly all the conventional methods can easily reach the MPP with high efficiency. Nonetheless, they fail to extract the GP when PS occurs. To overcome this problem, Evolutionary Algorithms (AEs), namely the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are simulated and compared to the conventional methods (Perturb & Observe) under the same software.


2018 ◽  
Vol 12 (1) ◽  
pp. 34-38
Author(s):  
Halil Erol ◽  
Mahmut Uçman

The Power-Voltage characteristic of a photovoltaic (PV) array exhibits non-linear behaviour when exposed to uniform solar irradiance. Maximum Power Point (MPP) tracking is challenging due to the varying climatic conditions in a solar PV system. Moreover, the tracking algorithm becomes more complicated due to the presence of multiple peaks in the power voltage characteristics under the condition of partial shading. This research is devoted to the Stochastic Beam Search (SBS) based algorithm and Stochastic Hill Climbing (SHC) for a maximum power point tracking (MPPT) at a partial shading condition in the PV system. To give a partial shading effect over the entire array of a PV system, a mast is placed in front of the modules. The modules in the array are connected in such a way that one does not need to rewire the electrical connection during the rearrangement of modules. It is validated that the power generation performance of an array under a moving shading condition is increased. Furthermore, it is observed that the SHC method outperforms the SBS method in the MMP tracking.


2017 ◽  
Vol 6 (3) ◽  
pp. 203 ◽  
Author(s):  
Santhan Kumar Cherukuri ◽  
Srinivasa Rao Rayapudi

Partial shading condition is one of the adverse phenomena which effects the power output of photovoltaic (PV) systems due to inaccurate tracking of global maximum power point. Conventional Maximum Power Point Tracking (MPPT) techniques like Perturb and Observe, Incremental Conductance and Hill Climbing can track the maximum power point effectively under uniform shaded condition, but fails under partial shaded condition. An attractive solution under partial shaded condition is application of meta-heuristic algorithms to operate at global maximum power point. Hence in this paper, an Enhanced Grey Wolf Optimizer (EGWO) based maximum power point tracking algorithm is proposed to track the global maximum power point of PV system under partial shading condition. A Mathematical model of PV system is developed under partial shaded condition using single diode model and EGWO is applied to track global maximum power point. The proposed method is programmed in MATLAB environment and simulations are carried out on 4S and 2S2P PV configurations for dynamically changing shading patterns. The results of the proposed method are analyzed and compared with GWO and PSO algorithms. It is observed that proposed method is effective in tracking global maximum power point with more accuracy in less computation time compared to other methods.Article History: Received June 12nd 2017; Received in revised form August 13rd 2017; Accepted August 15th 2017; Available onlineHow to Cite This Article: Kumar, C.H.S and Rao, R.S. (2017 Enhanced Grey Wolf Optimizer Based MPPT Algorithm of PV System Under Partial Shaded Condition. Int. Journal of Renewable Energy Development, 6(3), 203-212.https://doi.org/10.14710/ijred.6.3.203-212


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1866 ◽  
Author(s):  
Nubia Ponce de León Puig ◽  
Leonardo Acho ◽  
José Rodellar

In the several last years, numerous Maximum Power Point Tracking (MPPT) methods for photovoltaic (PV) systems have been proposed. An MPPT strategy is necessary to ensure the maximum power efficiency provided to the load from a PV module that is subject to external environmental perturbations such as radiance, temperature and partial shading. In this paper, a new MPPT technique is presented. Our approach has the novelty that it is a MPPT algorithm with a dynamic hysteresis model incorporated. One of the most cited Maximum Power Point Tracking methods is the Perturb and Observer algorithm since it is easily implemented. A comparison between the approach presented in this paper and the known Perturb and Observer method is evaluated. Moreover, a new PV-system platform was properly designed by employing low cost electronics, which may serve as an academical platform for further research and developments. This platform is used to show that the proposed algorithm is more efficient than the standard Perturb and Observer method.


Author(s):  
Ahmed Ibrahim ◽  
Raef Aboelsaud ◽  
Sergey Obukhov

This paper presents a cuckoo search (CS) algorithm for determining the global maximum power point (GMPP) tracking of photovoltaic (PV) under partial shading conditions (PSC). The conventional methods are fail to track the GMPP under PSC, which decrease the reliability of the power system and increase the system losses. The performance of the CS algorithm is compared with perturb and observe (P&O) algorithm for different cases of operations of PV panels under PSC. The CS algorithm used in this work to control directly the duty cycle of the DC-DC converter without proportional integral derivative (PID) controller. The proposed CS model can track the GMPP very accurate with high efficiency in less time under different conditions as well as in PSC.


Sign in / Sign up

Export Citation Format

Share Document