scholarly journals Performance Analysis of Water Heating System by Using Double Glazed Flat Plate Solar Water Heater

Teknomekanik ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Andika Putra ◽  
Arwizet K ◽  
Yolli Fernanda ◽  
Delima Yanti Sari

Nowadays, the use of solar energy is incredibly important to be increased since solar energy is renewable energy and also does not cause pollution. To harness solar energy, a solar collector device is needed to convert solar energy into heat energy. This study aimed to analyze the heat transfer in the flat plate solar collector which is used as a source of thermal energy in the water heating process for bathing. A double-glazed solar collector was used to absorb solar thermal energy and then transferred it to a water pipe. The pipe material used copper which has a very high conductivity value with an outer diameter of 15.7 mm. The plate collector used aluminium plates because they have high thermal conductivity. The dimensions of the collector frame were 150 cm long, 80 cm wide and 80 cm high. The collector frame was made of wood and covered with an insulator from coconut fibre with a thickness of 8 cm, with a tilt angle of 15˚. Based on the experimental process, the collector temperature was taken by using a thermocouple in order to heat the water which the inlet temperature in a bucket was 28˚C and the outlet water temperature during the experiment was 40˚C.

2022 ◽  
Author(s):  
Sathiya Satchi Christopher ◽  
Vellaisamy Kumaresan

Abstract The intermittency of solar thermal energy warrants the integration/utilization of thermal energy storage system for efficient operation. Effective utilization of solar water heating (SWH) system can reduce nearly 70 - 90 % of the energy cost incurred for water heating applications. In this study, a compound parabolic concentrator (CPC) solar collector is paired with thermal energy storage (TES) system for the improvement of thermal performance of the collector through enhanced heat transfer rate and minimizing the heat losses. Effects of varying mass flow rate and different arrangement of phase change materials (PCMs) on the performance of the CPC solar collector are investigated. A study of the influence of PCMs configurations in TES systems viz three PCMs (Case 1) and five PCMs (Case 2) on the energy efficiency, exergy efficiency and overall loss coefficient of the solar collector and TES system is made and compared with sensible TES system. The results show the attainment of maximum thermal efficiency of 70 % for ‘Case 2’. Comparison with ‘Case 1’, ‘Case 2’ exhibited a reduction heat loss of 4 % from the TES system. Results of exergy study reveal a superior performance in Case 2 over other configurations.


TECCIENCIA ◽  
2020 ◽  
Vol 16 (30) ◽  
pp. 29-52
Author(s):  
Juan Andres Avila Carraznza ◽  
Carlos Mario Rocha ◽  
Juan Sebastian Solis Chavez

The use of Flat Solar Collectors for the generation of Domestic Hot Water (DHW), facilitates access to this resource in an efficient, economical and sustainable way. The Sustainable Development Goals proposed by the UN, referring specifically to sustainable water management and access to renewable energy, are the main motivation for this work, since the former is an essential vital resource and its access reduces the inequality index, in developing countries such as Colombia, while the use of solar thermal energy reduces the environmental impact of the water heating process, thus reducing the consumption of electrical energy in the residential sector. Therefore, this work proposes to estimate DHW profiles through a spreadsheet that models the DHW flow thermodynamically for a whole year, making it possible to evaluate the energy performance of a Solar Collector available in the Colombian market and that is used in four types of dwellings located in the city of Bogotá. The simulation results present the DHW consumption profiles in kg/h per year, with DHW temperatures of up to 21°C, for a total transmitted irradiance of the order of 1100 W/m^2, which produces thermal energy close to 1kW. This comparative analysis allows us to review the technical and economic feasibility of solar collectors installed in single-family homes and with a DHW consumption profile close to the Colombian socio-economic reality


Author(s):  
RAMESH C ◽  
SEKAR M

The depletion of conventional energy source, the need for unconventional energy is focused on solar energy as it is avail plentiful. Converting the solar energy in to thermal energy is the effective way of utilization of solar energy rather the conversion of electrical energy. This paper compared the behavior of solar collector at 30º and 45º angles with black chrome coated absorber plate without and with glass reflectors. In the view of performance enhancement of the collector, the reflector was adjusted to maximize the incident ray for every hour. It is found that the collector fixed at 30º with ground heats the water better and again the performance can be increased by the reflector.


TECCIENCIA ◽  
2021 ◽  
Vol 16 (31) ◽  
pp. 29-52
Author(s):  
Juan Andrés Ávila Carranza ◽  
Carlos Mario Rocha-Osorio ◽  
Juan Sebastián Solís-Chave

The use of Flat Solar Collectors for the generation of Domestic Hot Water (DHW), facilitates access to this resource in an efficient, economical and sustainable way. The Sustainable Development Goals proposed by the UN, referring specifically to sustainable water management and access to renewable energy, are the main motivation for this work, since the former is an essential vital resource and its access reduces the inequality index, in developing countries such as Colombia, while the use of solar thermal energy reduces the environmental impact of the water heating process, thus reducing the consumption of electrical energy in the residential sector. Therefore, this work proposes to estimate DHW profiles through a spreadsheet that models the DHW flow thermodynamically for a whole year, making it possible to evaluate the energy performance of a Solar Collector available in the Colombian market and that is used in four types of dwellings located in the city of Bogotá. The simulation results present the DHW consumption profiles in kg/h per year, with DHW temperatures of up to 21°C, for a total transmitted irradiance of the order of 1100 W/m^2, which produces thermal energy close to 1kW. This comparative analysis allows us to review the technical and economic feasibility of solar collectors installed in single-family homes and with a DHW consumption profile close to the Colombian socio-economic reality.


2007 ◽  
Vol 6 (2) ◽  
pp. 19
Author(s):  
J. M. S. Lafay ◽  
A. Krenzinger

This work presents the methodology and results of the validation of a computer program for the simulation of water heating systems combining solar energy and gas. Two experimental systems, named series and parallel, were assembled. These systems have the same components, differing on how they are connected. All the components were individually characterized and their parameters determined. Simulations of the behavior of the thermal tank, gas heater and solar collector were performed and confronted to experimental data. The results show that the simulation program “AQUESOLGAS” can accurately describe the behavior of water heating systems with solar energy and gas.


2017 ◽  
Author(s):  
Carola Sánchez ◽  
José Macías ◽  
Jonathan León ◽  
Geancarlos Zamora ◽  
Guillermo Soriano

Passive solar water heating (SWH) is a convenient method to meet domestic hot water requirements in rural areas, where electricity may not be available or fuel supply might be limited due to difficult access. In this work, a low-cost thermosiphon flat-plate solar collector alternative is presented. The design was purposely limited to materials and recyclable products widely available in the local market, such as Tetra Pak, plastic bottles, and polypropylene (PP) fittings and pipes. Since PP is a thermoplastic polymer, a poor heat conductor, it was necessary to ensure a suitable system isolation to obtain an optimum thermal performance, comparable to commercial solar collectors. The design was built and tested in Guayaquil, Ecuadorian coastal city. Six inexpensive temperature sensors were placed at the entrance and exit of the collector, on the flat-plate and inside the hot water storage tank. Data was recorded using an Arduino single-board computer and later analyzed with the data gathered via weather station. The implementation costs of the system are approximately US$300, the overall performance during January 2017 fluctuated between 54% and 23%, and the storage tank temperature range varied from to 46°C to 33°C. Due to its reliability and affordable cost, the SWH system is an attractive alternative to an Ecuadorian commercial solar flat plate collector, which price is set between US$600 and US$700, it has an efficiency around 60%, and the average annual storage tank temperature is 62°C.


2014 ◽  
pp. 1550-1578
Author(s):  
Ahmed Elgafy

With the urgent need to harvest and store solar energy, especially with the dramatic unexpected changes in oil prices, the design of new generation of solar energy storage systems has grown in importance. Besides diminishing the role of the oil, these systems provide green energy which would help reducing air pollution. Solar energy would be stored in different forms of energy; thermal, electric, hybrid thermal/electric, thermochemical, photochemical, and photocapacitors. The nature of solar energy, radiant thermal energy, magnifies the role and usage of thermal energy storage (TES) techniques. In this chapter, different techniques/technologies for solar thermal energy storage are introduced for both terrestrial and space applications. Enhancing the performance of these techniques using nanotechnology is introduced as well as using of advanced materials and structures. The chapter also introduces the main features of the other techniques for solar energy storage along with recent conducted research work. Economic and environment feasibility studies are also introduced.


Author(s):  
Ahmed Elgafy

With the urgent need to harvest and store solar energy, especially with the dramatic unexpected changes in oil prices, the design of new generation of solar energy storage systems has grown in importance. Besides diminishing the role of the oil, these systems provide green energy which would help reducing air pollution. Solar energy would be stored in different forms of energy; thermal, electric, hybrid thermal/electric, thermochemical, photochemical, and photocapacitors. The nature of solar energy, radiant thermal energy, magnifies the role and usage of thermal energy storage (TES) techniques. In this chapter, different techniques/technologies for solar thermal energy storage are introduced for both terrestrial and space applications. Enhancing the performance of these techniques using nanotechnology is introduced as well as using of advanced materials and structures. The chapter also introduces the main features of the other techniques for solar energy storage along with recent conducted research work. Economic and environment feasibility studies are also introduced.


Author(s):  
Mustafa Aktaş ◽  
Meltem Koşan ◽  
Erhan Arslan ◽  
Azim Doğuş Tuncer

The integrated usage of solar energy systems, heat pump applications, and thermal energy storage units is an effective way for heating systems due to their sustainability and stability in operations. In this study, a novel direct solar-assisted heat pump with thermal energy system has been designed which uses the solar collector as the evaporator of the heat pump. Besides, two-dimensional transient numeric analyses have been conducted for the thermal energy storage unit using the ANSYS Fluent 16.2 commercial software package. With this direct system, the heat required for heating systems is supplied from the condenser with the heat received from the solar collector of the working fluid. For an effective and high performance system, the solar collector is designed as a double-pass which provided superheating of the working fluid. It is aimed to store the surplus energy from the solar energy in the thermal energy storage unit and to operate the system continuously and efficiently in both sunny and overcast weather conditions. Furthermore, the system has been analyzed theoretically and the results show that coefficient of performance may improve. As a result, this newly designed system can be successfully applied for thermal applications.


2015 ◽  
Vol 77 (1) ◽  
Author(s):  
Amyra MY ◽  
Nor'azizi Othman ◽  
Shamsul Sarip ◽  
Yasuyuki Ikegami ◽  
Mohd Alshafiq Tambi Chik ◽  
...  

This article reports the simulation study on the performance of utilizing a solar collector at the inlet of an evaporator to provide auxiliary heat into a system for hydrogen generation in an OTEC cycle. The conventional method of OTEC is simulated by FORTRAN programming and the results were compared with the presence of solar collector on the system. In the simulation experimental, the incoming temperature of warm seawater was boosted by using a flat plate solar collector. For the purpose of the experiment, a 100 kW OTEC cycle that was designed incorporated a solar boosting capability. Its thermodynamic efficiency was then compared through a series of simulation involving several control parameters. The results reveal that the proposed solar boosted OTEC enhanced the thermal efficiency, TE. Increase in solar power absorption can increase the net power output, thus increasing the amount of hydrogen produced. The results obtained provided insights, from a thermodynamic perspective, on the outcome of combining sustainable energy with solar thermal energy to improve the system performance.


Sign in / Sign up

Export Citation Format

Share Document