scholarly journals ANALYSIS OF FATIGUE OF CONNECTING ROD ZL 109 BY USING FINITE ELEMENT METHOD

2016 ◽  
Vol 2 (9) ◽  
Author(s):  
Amita Saxena ◽  
Ashish Kumar Sinha

The connecting rod is the intermediate member between the piston and the Crankshaft. Its primary function is to transmit the push and pull from the piston pin to the crank pin, thus converting the reciprocating motion of the piston into rotary motion of the crank. Existing connecting rod is manufactured by using Carbon steel. The axial stresses are produced due to cylinder gas pressure (compressive only) and the inertia force arising in account of reciprocating action (both tensile as well as compressive), where as bending stresses are caused due to the centrifugal effects. The result of which is, the maximum stresses are developed at the fillet section of the big and the small end. Hence, the project deals with the stress analysis of connecting rod by Finite Element Method ANSYS WORKBENCH 16.0 Software. The main objective in this paper to review on design evaluation and optimization of connecting rod parameters by using finite element method is to achieve suitable design for connecting rod. That can be achieved by changing such design parameters in the existing design. Finite element analysis of single cylinder four stroke petrol engines is taken for the study; Structural systems of Connecting rod can be easily analyzed using Finite Element techniques. So firstly a proper Finite Element Model is developed using CAD software. Then static and dynamic analysis is done to determine the von Misses stress, shear stress, elastic strain, total deformation in the present design connecting rod for the given loading conditions using Finite Element Analysis Software ANSYS v 16.In the first part of the study, the static and dynamic loads acting on the connecting rod, After that the work is carried out for safe design. Based on the observations of the static FEA and the load analysis results, the load for the optimization study was selected. The results were also used to determine of various stress and the fatigue model to be used for analyzing the fatigue strength. Outputs of the fatigue analysis of include fatigue life, damage, factor of safety, stress biaxiality indication. Then results of present model in ANSYS 16.0 are compared with the results of existing design in the reference paper.

2013 ◽  
Vol 275-277 ◽  
pp. 2241-2247 ◽  
Author(s):  
Arbtip Dheeravongkit ◽  
Narongsak Tirasuntarakul

Ball swaging is a general method in head stack assembly process to permanently attach Head Gimbal Assemblies (HGA) on the actuator arm. In this process, the swage ball is guided by a pin through the inner base plate’s hole in order to deform the base plate to tightly attach to the actuator arm. However, the loosing problem can still be found quite often in the current swaging process. This research focuses on ball sizes and the number of balls used which currently no theoretical guidance in choosing the both parameters. Besides, the best combination of the both parameters can give the best swaging performance. The three-dimensional finite element model is created and analyzed to estimate the swaging performance according to the variation of both parameters by using the tightening torque and the fixing distance of base plate to determine the quality of the ball swaging process. The results from finite element method are treated as the sampling points which are used to create the interpolation in order to increase the considered cases to cover all happening cases from both parameters. After that, a searching algorithm is implemented to determine the most suitable ball size and the number of ball used for the process. By using the finite element analysis together with the interpolation and a searching algorithm, the optimal design parameters for a complex problem with multiple conditions of consideration can be easily found.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


2008 ◽  
Vol 606 ◽  
pp. 103-118 ◽  
Author(s):  
Jing Zhe Pan ◽  
Ruo Yu Huang

Predicting the sintering deformation of ceramic powder compacts is very important to manufactures of ceramic components. In theory the finite element method can be used to calculate the sintering deformation. In practice the method has not been used very often by the industry for a very simple reason – it is more expensive to obtain the material data required in a finite element analysis than it is to develop a product through trial and error. A finite element analysis of sintering deformation requires the shear and bulk viscosities of the powder compact. The viscosities are strong functions of temperature, density and grain-size, all of which change dramatically in the sintering process. There are two ways to establish the dependence of the viscosities on the microstructure: (a) by using a material model and (b) by fitting the experimental data. The materials models differ from each other widely and it can be difficult to know which one to use. On the other hand, obtaining fitting functions is very time consuming. To overcome this difficulty, Pan and his co-workers developed a reduced finite element method (Kiani et. al. J. Eur. Ceram. Soc., 2007, 27, 2377-2383; Huang and Pan, J. Eur. Ceram. Soc., available on line, 2008) which does not require the viscosities; rather the densification data (density as function of time) is used to predict sintering deformation. This paper provides an overview of the reduced method and a series of case studies.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


2012 ◽  
Vol 271-272 ◽  
pp. 1291-1295
Author(s):  
Cai Jun Liu

By use of finite element method to analyze the strength of 6-wing synchronous rotor, and illustrate the change of parameters regarding strain, stress and displacement etc. so as to visually see whether the designed rotor will reach the design requirements; meanwhile, through structural analysis, to provide guidance for the further optimization of designing for 6-wing synchronous rotor.


Sign in / Sign up

Export Citation Format

Share Document