Mathematical modeling of unmanned movement aircraft - four-rotor

2020 ◽  
Vol 2 (3) ◽  
pp. 149-163
Author(s):  
Jerzy Kisilowski ◽  
Rafał Kowalik ◽  
Łukasz Parszutowicz

The article presents an analytical approach to building a mathematical model of a quadrocopter. The main purpose of building the model was to design an appropriate facility control system and analyze its behavior in various situations. The assumption was made to build a model, control system and all accompanying algorithms in an open programming environment, which will allow their subsequent implementation in a real facility, without the need to use expensive software. The quadrocopter is controlled by the operator by means of hand movements that are read by the camera and properly interpreted using advanced image processing methods. The entire system is visualized and embedded in a three-dimensional simulation environment. The model study was conducted using a DC motor as an input data source. The operation of the model was checked with a controller when a disturbance was introduced into the model. The four-rotor model with a selected regulator was tested by analyzing the angular velocity and position of the object in a rectangular coordinate system. At the end of the article, the results of the simulations made are presented and the resulting conclusions are presented.

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092167
Author(s):  
Hao Quan ◽  
Yansheng Li ◽  
Yi Zhang

At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.


SIMULATION ◽  
2017 ◽  
Vol 93 (9) ◽  
pp. 771-780 ◽  
Author(s):  
Erkan Uslu ◽  
Furkan Çakmak ◽  
Nihal Altuntaş ◽  
Salih Marangoz ◽  
Mehmet Fatih Amasyalı ◽  
...  

Robots are an important part of urban search and rescue tasks. World wide attention has been given to developing capable physical platforms that would be beneficial for rescue teams. It is evident that use of multi-robots increases the effectiveness of these systems. The Robot Operating System (ROS) is becoming a standard platform for the robotics research community for both physical robots and simulation environments. Gazebo, with connectivity to the ROS, is a three-dimensional simulation environment that is also becoming a standard. Several simultaneous localization and mapping algorithms are implemented in the ROS; however, there is no multi-robot mapping implementation. In this work, two multi-robot mapping algorithm implementations are presented, namely multi-robot gMapping and multi-robot Hector Mapping. The multi-robot implementations are tested in the Gazebo simulation environment. Also, in order to achieve a more realistic simulation, every incremental robot movement is modeled with rotational and translational noise.


2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

2009 ◽  
Vol 19 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Hong-Bing Xiong ◽  
Jian-Zhong Lin ◽  
Ze-Fei Zhu

Author(s):  
Clarisse Delalondre ◽  
M. Gonzales ◽  
Olivier Simonin ◽  
Said Zahrai

Sign in / Sign up

Export Citation Format

Share Document