scholarly journals Transient Analysis of Grounding Systems Associated to Substation Structures under Lightning Strokes

2007 ◽  
Vol 3 (1) ◽  
pp. 59 ◽  
Author(s):  
B. Harrat ◽  
B. Nekhoul ◽  
M. Lefouili ◽  
K. Kerroum ◽  
K. El khamlichi Drissi

In this paper we propose a new formalism for analyzing the transient behavior of grounding systems associated to substation structures (Faraday-cage) under lightning strokesin unsettled regime. The protective device to study is formed of a guard filet connected to a grounding grid by simple conductors called down conductors. Our formalism is based on the resolution of the propagation equation in potential on 3D. The purpose of our proposition is the direct analyzing in time domain and simple implementation. We compare the results obtained by this new approach to results published in literature.

CORROSION ◽  
2000 ◽  
Vol 56 (9) ◽  
pp. 928-934
Author(s):  
G. Miramontes de León ◽  
D. C. Farden ◽  
D. E. Tallman

Abstract A new approach for the measurement of noise resistance based on the transient behavior of pitting corrosion is presented. Potential noise and current transients have been recognized as a characteristic behavior of pitting corrosion. This new approach uses the transient information present during corrosion as a way to estimate the noise resistance of coated metals directly. Computer simulation and analytical results are presented, indicating that the new technique can be applied to the problem of noise resistance estimation. This new approach was applied to experimental electrochemical noise data obtained with commercial electrochemical impedance spectroscopy (EIS)/electrochemcial noise measurement (ENM) equipment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Souma Jinno ◽  
Shuji Kitora ◽  
Hiroshi Toki ◽  
Masayuki Abe

AbstractWe formulate a numerical method on the transmission and radiation theory of three-dimensional conductors starting from the Maxwell equations in the time domain. We include the delay effect in the integral equations for the scalar and vector potentials rigorously, which is vital to obtain numerically stable solutions for transmission and radiation phenomena in conductors. We provide a formalism to connect the conductors to any passive lumped-parameter circuits. We show one example of numerical calculations, demonstrating that the new formalism provides stable solutions to the transmission and radiation phenomena.


Sign in / Sign up

Export Citation Format

Share Document