Transient Analysis and Simulation of Pitting Corrosion for the Estimation of Noise Resistance

CORROSION ◽  
2000 ◽  
Vol 56 (9) ◽  
pp. 928-934
Author(s):  
G. Miramontes de León ◽  
D. C. Farden ◽  
D. E. Tallman

Abstract A new approach for the measurement of noise resistance based on the transient behavior of pitting corrosion is presented. Potential noise and current transients have been recognized as a characteristic behavior of pitting corrosion. This new approach uses the transient information present during corrosion as a way to estimate the noise resistance of coated metals directly. Computer simulation and analytical results are presented, indicating that the new technique can be applied to the problem of noise resistance estimation. This new approach was applied to experimental electrochemical noise data obtained with commercial electrochemical impedance spectroscopy (EIS)/electrochemcial noise measurement (ENM) equipment.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
A. P. Shashikala ◽  
J. Ramasubramanian ◽  
G. Janakiraman

The random nature of sea waves and the aggressive corrosive environment of seawater make corrosion an important factor in deciding the safe operational life of offshore steel structures. The consistent rise in offshore oil exploration activities in the last 2 decades has compelled structural engineers and researchers to better understand, the process of corrosion in offshore steel structures. The various electrochemical methods available for corrosion monitoring are polarization, electrochemical impedance spectroscopy and electro chemical noise (ECN) techniques. In offshore industry, the reliable interpretation of electrochemical noise is particularly valuable since it promises new type of online monitoring device. This paper introduces ECN as an online corrosion-monitoring tool for marine structures. The paper discusses the laboratory experiments conducted on test specimens to collect data related to the electrochemical behavior of structural steel such as the polarization data, impedance measurements, electrochemical, potential, and current noise measurements. Investigations were carried out on MS coupons surface prepared and coated with anticorrosive and antifouling paints. An electrochemical workstation capable of collecting data from specimens coated with paint was used for noise data collection. Static corrosion tests have been done and the corrosion rate and corrosion resistance of the coatings were assessed using the statistical analysis. The electrochemical noise data were compared with that of polarization and impedance data and a good correlation between corrosion rates was obtained. The polarization and noise resistance were found to be similar in trend but with variation in numerical values. Statistical parameters like mean, standard deviation, skew, and kurtosis were generated from the obtained noise. These parameters were then processed to obtain noise resistance and corrosion rate. The results were compared with that of polarization and impedance values. The corrosion rate comparison showed a deviation of 10% from polarization with ECN giving the upper bound values. The damage prediction and expected life prediction of a steel jacket platform were also performed using the data collected. The experiments showed a good correlation between the noise resistances obtained from various electrochemical methods. The aim of introducing the ECN as an online monitoring tool for marine structures especially in on-life offshore structures gives valid data with good results and shows good sensitivity.


2020 ◽  
Vol 45 (4) ◽  
pp. 57-70
Author(s):  
Sidineia Barrozo ◽  
Riberto Nunes Peres ◽  
Marcus José Witzler ◽  
Assis Vicente Benedetti ◽  
Cecílio Sadao Fugivara

Electrochemical noise (EN) measurements are based on the fluctuations of the electrochemical potential and the current that occur during, for example, a corrosion process without an external signal perturbation. EN analysis (ENA) allows assessment of the type of corrosion and rapid determination of the corrosion rate. Microsoft Excel®, an inexpensive and readily available software package, is an excellent tool for performing repetitive calculations, with automation that saves time for the users. It is a useful tool for the analysis of EN data using fast Fourier transform (FFT), a process that is often made repeatedly and, if not automated, is quite laborious. This work presents a step-by-step procedure using Excel to perform these calculations, automating the process of obtaining the spectral electrochemical noise resistance, . This routine was used to analyze experimental potential and current noise data recorded for chalcopyrite. The results were comparable to those obtained for the same set of experimental data using Origin® software.


2007 ◽  
Vol 17 (10) ◽  
pp. 3725-3728 ◽  
Author(s):  
LUIS SANTOS MONTALBÁN ◽  
PÄIVI HENTTU ◽  
ROBERT PICHÉ

Electrochemical noise (EN) data is commonly used to monitor corrosion of metals in various environments. In this work we use recurrence quantification analysis (RQA) to study EN time series of stainless steel AISI 316 samples immersed in a mildly corrosive electrolyte. It is found that RQA of current and potential time series reveal different information: current time series provides detailed information on the kinetics of the pitting corrosion process, while the potential time series identifies the transitions from one thermodynamic state to another in the pitting corrosion process.


2007 ◽  
Vol 3 (1) ◽  
pp. 59 ◽  
Author(s):  
B. Harrat ◽  
B. Nekhoul ◽  
M. Lefouili ◽  
K. Kerroum ◽  
K. El khamlichi Drissi

In this paper we propose a new formalism for analyzing the transient behavior of grounding systems associated to substation structures (Faraday-cage) under lightning strokesin unsettled regime. The protective device to study is formed of a guard filet connected to a grounding grid by simple conductors called down conductors. Our formalism is based on the resolution of the propagation equation in potential on 3D. The purpose of our proposition is the direct analyzing in time domain and simple implementation. We compare the results obtained by this new approach to results published in literature.


CORROSION ◽  
10.5006/2900 ◽  
2018 ◽  
Vol 75 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Mohammad Nazarnezhad Bajestani ◽  
Jaber Neshati ◽  
Mohammad Hossein Siadati

2004 ◽  
Vol 18 (06) ◽  
pp. 827-840
Author(s):  
CHIH-CHUN CHIEN ◽  
NING-NING PANG ◽  
WEN-JER TZENG

We study the restricted solid-on-solid (RSOS) model by grouping consecutive sites into local configurations and obtain the master equations of the probability distribution of these local configurations in closed forms. The obtained solutions to these equations fit very well with those from direct computer simulation of the RSOS model. To demonstrate the effectiveness of this new approach for studying interfacial phenomena, we then calculate the correlation functions and even scaling exponents based on this obtained probability distribution of local configurations. The results are also consistent very well with those obtained from the KPZ equation or direct simulation of the RSOS model.


2004 ◽  
Vol 04 (03) ◽  
pp. R39-R55 ◽  
Author(s):  
G. MONTESPERELLI ◽  
G. GUSMANO

This paper gives an overview of the use of Electrochemical Noise (EN) for corrosion studying and monitoring. Since the quality and reliability of noise data are affected by a number of acquisition parameters, such as sampling interval, sampling duration, D.C. trend and instrumental noise, some experimental and practical aspects were discussed. The use of statistical parameters such as standard deviation, Pit Index and/or Localization Index and Noise Resistance to analyze noise data of corroding systems were examined. Many experimental applications of Electrochemical Noise Measurements on different metals and alloys were given. EN data have been compared with traditional electrochemical techniques. EN allowed to characterize the corrosion behavior of samples giving in some cases good quantitative estimation. The transposition of current and potential noise acquisition in the frequency domain (by Fast Fourier Transform and/or Maximum Entropy Method), gave further information on corrosion mechanism and in particular permitted to identify the type of corrosion. Finally the use of Discriminant Analysis permitted to deduce the best sampling frequency and sampling duration for EN acquisition, able to discriminate between two different situations.


Sign in / Sign up

Export Citation Format

Share Document