scholarly journals ENERGY SAVING TECHNOLOGIES OF PORT FACILITIES ON THE BASIS OF GEO-THERMAL HEAT PUMPS

Author(s):  
Nadejda Yuryevna Saprykina ◽  
Pavel Victorovich Yakovlev

Energy-saving technologies of port facilities and shipyards on the basis of geothermal heat pumps are a very promising direction. The features of offshore facilities are their presence in the zone of influence of seepage flow of ground water, significantly complicating the introduction of energysaving geothermal systems. The results of mathematical modeling of temperature field of soil mass, generated during the operation of the vertical ground heat exchanger of geothermal heat pump over 5 years are presented. The developed method is based on the equation of unsteady heat conduction and setting of boundary conditions for the different operating modes of the heat pump. The results of the temperature field changes were suggested in three modes of operation of geothermal plants: without changing the direction of heat flow, with a change in the direction of heat flow (regeneration) and in the condition of complicated influence of filtration flow of groundwater. The studies were conducted in order to build computational models that are adequate to real physical processes. The method of similarity theory is used to generalize the results.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


2005 ◽  
Vol 128 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Onder Ozgener ◽  
Arif Hepbasli

The main objective in doing the present study is twofold, namely (i) to review briefly the utilization of geothermally heated greenhouses and geothermal heat pumps in Turkey, since the system studied utilizes both renewable energy resources and (ii) to present the Analytical Hierarchy Process (AHP) as a potential decision making method for use in a greenhouse integrated solar assisted geothermal heat pump system (GISAGHPS), which was installed in the Solar Energy Institute of Ege University, Izmir, Turkey. This investigation may also be regarded as the one of the limited studies on the application of the AHP method to GISAGHPs, as no studies on the GISAGHPS have appeared in the literature. In this context, an economic analysis is performed based on the life cycle costing technique first. The results are then evaluated by applying the AHP method to a study, which is a comparative study on the GISAGHPS and split system. The results indicated that the GISAGHPS is economically preferable to the conventional split heating/cooling system under Turkey’s conditions.


2011 ◽  
Vol 383-390 ◽  
pp. 1933-1937
Author(s):  
Wei Xiu Shi ◽  
Wei Yi Li ◽  
Li Sheng Pan ◽  
Zhi Hua Zhou

Under the situation of energy crisis, air source heat pumps are paid more attention recently. In terms of energy saving, the feasibility and performance of boiled water machine with air source heat pump are studied by experiment in this paper. The results are as follows: the best outlet temperature of heat pump is 55°C in winter, and that is 65°C in other seasons correspondingly. Electromagnetic heater is used as the accessorial heating method, which can heat water to 95°C so as to be fit to drinking. Moreover, the energy saving effect of the unit is remarkable. At the end of the paper, the preliminary conception of structure and automatic control is proposed.


2011 ◽  
Vol 347-353 ◽  
pp. 587-590
Author(s):  
Qing Hai Luo ◽  
Zheng Zuo

This paper analyzes the energy consumption of hot water supply in buildings and the insurmountable shortcoming of low energy efficiency of conventional water heaters, and investigates the progress and problems of developing heat pump water heaters. It is pointed out that developing of heat pump water heaters is one of the efficient approaches to improve the energy efficiency of hot water supply.


2012 ◽  
Vol 608-609 ◽  
pp. 961-964
Author(s):  
Xia Chen ◽  
Li Wang ◽  
Li Ge Tong ◽  
Shu Feng Sun ◽  
Xian Fang Yue ◽  
...  

China is ranked as the world’s largest emitter of carbon dioxide (CO2). The CO2 emission from urban central heating (UCH) is responsible for 4.4% of China’s total CO2 emission. It is proposed that heat pump heating (HPH) could serve as a replacement for UCH to help realize energy-saving and emission-reduction goals to a greater extent. In northern China, 30% of urban building area is covered by urban decentralized heating (UDH). Replacing UDH with HPH is the current trend in China. In this paper we analyze the impact of replacing coal with heat pumps on the power generation sector in China. The results show that HPH has a positive impact on the power generation sector. By considering simultaneous replacement of UCH and UDH with HPH, the efficiency of power generation at the valley electricity time is increased by 0.512%; the ratio of peak–valley difference is decreased by 25.3%; the obtained reduction of CO2 emission cumulatively contributes to approximately 10.96% of this target.


2017 ◽  
Vol 53 (1) ◽  
Author(s):  
A. E. Denysova ◽  
G. V. Luzhanska ◽  
I. O. Bodnar ◽  
A. S. Denysova

The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources have essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two stages heat pump installation operating as heat source at ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of groundwater energy. Calculated are the values of electric energy consumption by the compressors’ drive, and the heat supply system transformation coefficient µ for a low-potential source of heat from ground waters allowing to estimate high efficiency of two stages heat pump installations.


Author(s):  
Swapnil Dubey

Abstract In Singapore, roughly 20% of the energy consumed by households is used for water heating and almost all the energy consumed by conventional electric water heaters. One of the significant potential energy saving opportunities lies in using energy-efficient water heating appliances. Recently, there has been a move towards energy-saving design and the use of natural refrigerants over fluorocarbons. Unlike conventional electric storage water heaters, which use electricity to heat water directly, heat pump storage water heaters use electricity only to operate a pump that circulates refrigerants around the system. This refrigerant collects heat from the surrounding atmosphere and transfers it to the water. CO2 heat pumps have low global warming potential when compared to other refrigerants based heat pumps, has zero ozone depletion potential, inexpensive, non-flammable, generate high temperature. In this project, a comparative analysis of three different water heater types has been presented based on real-time usage and living-lab conditions under the tropical climate of Singapore. These three types are: 1. Electrical heater storage type 2. Hybrid heat pump with auxiliary electrical heating water heater 3. CO2 heat pump water heater without auxiliary heating Study found significant energy saving using CO2 heat pump compared to other water heating system and also better for environment.


2017 ◽  
Vol 126 ◽  
pp. 1191-1198 ◽  
Author(s):  
Hyunjeong Lim ◽  
Chanjoong Kim ◽  
Yeonjoo Cho ◽  
Minsung Kim

Sign in / Sign up

Export Citation Format

Share Document