scholarly journals Detecting Attacks Using Big Data with Process Mining

Author(s):  
Ved Prakash Mishra ◽  
Yogeshwaran Sivasubramanian ◽  
Subheshree Jeevanandham

Abstract- In current digital world, Security has become the major issue for the organization. Every day the amount of data is growing in the world. Processing and analyzing of the data is becoming the new challenge for the analyzers. For this purpose, big data is useful to process the high volume of data in less time. Current security tools like existing firewalls and Intrusion Detection Systems are still not able to detect and prevent the attacks and intrusions in full proof manner and giving many false alarms. Big Data analytics concept could be very useful for analyzing, detection and providing full security to the organization because of the ability of handling the large amount of data. In this paper, we have described the concept and the roll of big data. We have also proposed a model using process mining to generate the alerts in the case of attacks.   Index Terms— Big Data, Process Mining, Intrusion Detection System, Logs.

2021 ◽  
Author(s):  
Farah Jemili ◽  
Hajer Bouras

In today’s world, Intrusion Detection System (IDS) is one of the significant tools used to the improvement of network security, by detecting attacks or abnormal data accesses. Most of existing IDS have many disadvantages such as high false alarm rates and low detection rates. For the IDS, dealing with distributed and massive data constitutes a challenge. Besides, dealing with imprecise data is another challenge. This paper proposes an Intrusion Detection System based on big data fuzzy analytics; Fuzzy C-Means (FCM) method is used to cluster and classify the pre-processed training dataset. The CTU-13 and the UNSW-NB15 are used as distributed and massive datasets to prove the feasibility of the method. The proposed system shows high performance in terms of accuracy, precision, detection rates, and false alarms.


Author(s):  
Pankaj Dadheech ◽  
Dinesh Goyal ◽  
Sumit Srivastava ◽  
Ankit Kumar

Spatial queries frequently used in Hadoop for significant data process. However, vast and massive size of spatial information makes it difficult to process the spatial inquiries proficiently, so they utilized the Hadoop system for process Big Data. We have used Boolean Queries & Geometry Boolean Spatial Data for Query Optimization using Hadoop System. In this paper, we show a lightweight and adaptable spatial data index for big data which will process in Hadoop frameworks. Results demonstrate the proficiency and adequacy of our spatial ordering system for various spatial inquiries.


2020 ◽  
Vol 17 (12) ◽  
pp. 5605-5612
Author(s):  
A. Kaliappan ◽  
D. Chitra

In today’s world, an immense measure of information in the form of unstructured, semi-structured and unstructured is generated by different sources all over the world in a tremendous amount. Big data is the termed coined to address these enormous amounts of data. One of the major challenges in the health sector is handling a high-volume variety of data generated from diverse sources and utilizing it for the wellbeing of human. Big data analytics is one of technique designed to operate with monstrous measures of information. The impact of big data in healthcare field and utilization of Hadoop system tools for supervising the big data are deliberated in this paper. The big data analytics role and its theoretical and conceptual architecture include the gathering of diverse information’s such as electronic health records, genome database and clinical decisions support systems, text representation in health care industry is investigated in this paper.


Author(s):  
Luis Filipe Dias ◽  
Miguel Correia

Intrusion detection has become a problem of big data, with a semantic gap between vast security data sources and real knowledge about threats. The use of machine learning (ML) algorithms on big data has already been successfully applied in other domains. Hence, this approach is promising for dealing with cyber security's big data problem. Rather than relying on human analysts to create signatures or classify huge volumes of data, ML can be used. ML allows the implementation of advanced algorithms to extract information from data using behavioral analysis or to find hidden correlations. However, the adversarial setting and the dynamism of the cyber threat landscape stand as difficult challenges when applying ML. The next generation security information and event management (SIEM) systems should provide security monitoring with the means for automation, orchestration and real-time contextual threat awareness. However, recent research shows that further work is needed to fulfill these requirements. This chapter presents a survey on recent work on big data analytics for intrusion detection.


Sign in / Sign up

Export Citation Format

Share Document