scholarly journals Classification of coronary artery disease data sets by using a deep neural network

2017 ◽  
Vol 1 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Abdullah Caliskan ◽  
Mehmet Emin Yuksel

Abstract In this study, a deep neural network classifier is proposed for the classification of coronary artery disease medical data sets. The proposed classifier is tested on reference CAD data sets from the literature and also compared with popular representative classification methods regarding its classification performance. Experimental results show that the deep neural network classifier offers much better accuracy, sensitivity and specificity rates when compared with other methods. The proposed method presents itself as an easily accessible and cost-effective alternative to currently existing methods used for the diagnosis of CAD and it can be applied for easily checking whether a given subject under examination has at least one occluded coronary artery or not.

2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) is the most common form of heart disease and has become the primary reason for death. A correct and on-time diagnosis of CAD is very important. Diagnosis of CAD being a strenuous activity, scientists have planned different intelligent diagnostic frameworks for improved CAD diagnosis. Still, low CAD classification accuracy is an issue in these frameworks. In this paper, the authors propose a feature selection technique (FST) that utilizes a genetic algorithm (GA) with J48 classifier as the objective function to choose adequate features for better CAD classification accuracy. After feature removal, classification frameworks are used (i.e., artificial neural network [ANN]) like multilayer perceptron network (MLP), radial basis function network (RBFN), ANN-based ensemble model (ANN-EM), and deep neural network (DNN). Finally, this research proposes an integrated model of GA and ANN-EM for classification of CAD.


2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


Author(s):  
Varun Sapra ◽  
M.L Saini ◽  
Luxmi Verma

Background: Cardiovascular diseases are increasing at an alarming rate with very high rate of mortality. Coronary artery disease is one of the type of cardiovascular disease, which is not easily diagnosed in its early stage. Prevention of Coronary Artery Disease is possible only if it is diagnosed, at early stage and proper medication is done. Objective: An effective diagnosis model is important not only for the early diagnosis but also to check the severity of the disease. Method: In this paper, a hybrid approach is followed, with the integration of deep learning (multi-layer perceptron) with Case based reasoning to design analytical framework. This paper suggests two phases of the study, one in which the patient is diagnosed for Coronary artery disease and in second phase, if the patient is suffering from the disease then employing Case based reasoning to diagnose the severity of the disease. In the first phase, multilayer perceptron is implemented on reduced dataset and with time-based learning for stochastic gradient descent respectively. Results: The classification accuracy is increase by 4.18 % with reduced data set using deep neural network with time based learning. In second phase, if the patient is diagnosed as positive for Coronary artery disease, then it triggers the Case based reasoning system to retrieve from the case base, the most similar case to predict the severity for that patient. The CBR model achieved 97.3% accuracy. Conclusion: The model can be very useful for medical practitioners as a supporting decision system and thus can save the patients from unnecessary medical expenses on costly tests and can improve the quality and effectiveness of medical treatment.


2021 ◽  
Vol 10 (5) ◽  
pp. 943
Author(s):  
Bartosz Hudzik ◽  
Justyna Nowak ◽  
Janusz Szkodzinski ◽  
Aleksander Danikiewicz ◽  
Ilona Korzonek-Szlacheta ◽  
...  

Background and Aims: Body-mass index (BMI) is a popular method implemented to define weight status. However, describing obesity by BMI may result in inaccurate assessment of adiposity. The Body Adiposity Index (BAI) is intended to be a directly validated method of estimating body fat percentage. We set out to compare body weight status assessment by BMI and BAI in a cohort of elderly patients with stable coronary artery disease (CAD). Methods: A total of 169 patients with stable CAD were enrolled in an out-patient cardiology clinic. The National Research Council (US) Committee on Diet and Health classification was used for individuals older than 65 years as underweight BMI < 24 kg/m2, normal weight BMI 24–29 kg/m2, overweight BMI 29–35 kg/m2, and obesity BMI > 35 kg/m2. In case of BAI, we used sex- and age-specific classification of weight status. In addition, body fat was estimated by bioelectrical impedance analysis (BImpA). Results: Only 72 out of 169 patients (42.6%) had concordant classification of weight status by both BMI and BAI. The majority of the patients had their weight status either underestimated or overestimated. There were strong positive correlations between BMI and BImpA (FAT%) (R = 0.78 p < 0.001); BAI and BImpA (FAT%) (R = 0.79 p < 0.001); and BMI and BAI (R = 0.67 p < 0.001). BMI tended to overestimate the rate of underweight, normal weight or overweight, meanwhile underestimating the rate of obesity. Third, BMI exhibited an average positive bias of 14.4% compared to the reference method (BImpA), whereas BAI exhibited an average negative bias of −8.3% compared to the reference method (BImpA). Multivariate logistic regression identified independent predictors of discordance in assessing weight status by BMI and BAI: BImpA (FAT%) odds ratio (OR) 1.29, total body water (%) OR 1.61, fat mass index OR 2.62, and Controlling Nutritional Status (CONUT) score OR 1.25. Conclusions: There is substantial rate of misclassification of weight status between BMI and BAI. These findings have significant implications for clinical practice as the boundary between health and disease in malnutrition is crucial to accurately define criteria for intervention. Perhaps BMI cut-offs for classifying weight status in the elderly should be revisited.


Sign in / Sign up

Export Citation Format

Share Document