scholarly journals A simple parameterization for tsunami run-up prediction

2017 ◽  
Vol 1 (2) ◽  
pp. 7-13 ◽  
Author(s):  
Latifatul Cholifah ◽  
Tjipto Prastowo

The linear shallow-water approximation is commonly used to describe tsunami propagation, where the wave is assumed as a long surface gravity wave. The evolution of wave height during its propagation from offshore to onshore is a classic problem. When arriving at a shoreline, the increased wave height causes severe destruction on infrastructures and fatalities. This problem has then been an important issue within the context of disaster risk reduction as it gives rise to the importance of tsunami run-up prediction. Using maximum run-up data from past events, we tested the applicability of the Green’s law based on shoaling only to calculate run-ups and found that the basic Green’s law was in doubt. Then, we examined energy density conservation involving refraction effect but no dissipation and derived a simple formula for parameterizing run-up height. Detailed descriptions on factors affecting run-ups, such as complex bathymetry and topography are not yet considered in the current study. The aim of this study is therefore to determine whether the modified Green’s law is applicable for tsunami run-up prediction using local water depths as external parameters and ray spacing widths in the normal direction of wave fronts related to refraction. The results are consistent with the measured run-ups, where approximately 70% of total points of observations confirm the modified Green’s law with a reasonable accuracy.

Author(s):  
Debashis Basu ◽  
Robert Sewell ◽  
Kaushik Das ◽  
Ron Janetzke ◽  
Biswajit Dasgupta ◽  
...  

This paper presents computational results for predicting earthquake-generated tsunami from a developed integrated computational framework. The computational framework encompasses the entire spectrum of modeling the earthquake-generated tsunami source, open-sea wave propagation, and wave run-up including inundation and on-shore effects. The present work develops a simplified source model based on pertinent local geologic and tectonic processes, observed seismic data (i.e., data obtained by inversion of seismic waves from seismographic measurements), and geodetic data (i.e., directly measured seafloor and land deformations). These source models estimated configurations of seafloor deformation used as initial waveforms in tsunami simulations. Together with sufficiently accurate and resolved bathymetric and topographic data, they provided the inputs needed to numerically simulate tsunami wave propagation, inundation and coastal impact. The present work systematically analyzes the effect of the tsunami source model on predicted tsunami behavior and the associated variability for the 2011 Tōhuku-Oki tsunami. Simulations were carried out for the 2011 Tōhuku -Oki Tsunami that took place on March 11, 2011, from an MW 9.1 earthquake. The numerical simulations were performed using the fully nonlinear Boussinesq hydrodynamics code, FUNWAVE-TVD (distributed by the University of Delaware). In addition, a sensitivity analysis was also carried out to study the effect of earthquake magnitude on the predicted wave height. The effect of coastal structure on the wave amplification at the shore is also studied. Simulated tsunami results for wave heights are compared to the available observational data from GPS (Global Positioning System) at the central Miyagi location.


2017 ◽  
Vol 17 (11) ◽  
pp. 1871-1883 ◽  
Author(s):  
Ryosuke Akoh ◽  
Tadaharu Ishikawa ◽  
Takashi Kojima ◽  
Mahito Tomaru ◽  
Shiro Maeno

Abstract. Run-up processes of the 2011 Tohoku tsunami into the city of Kamaishi, Japan, were simulated numerically using 2-D shallow water equations with a new treatment of building footprints. The model imposes an internal hydraulic condition of permeable and impermeable walls at the building footprint outline on unstructured triangular meshes. Digital data of the building footprint approximated by polygons were overlaid on a 1.0 m resolution terrain model. The hydraulic boundary conditions were ascertained using conventional tsunami propagation calculation from the seismic center to nearshore areas. Run-up flow calculations were conducted under the same hydraulic conditions for several cases having different building permeabilities. Comparison of computation results with field data suggests that the case with a small amount of wall permeability gives better agreement than the case with impermeable condition. Spatial mapping of an indicator for run-up flow intensity (IF = (hU2)max, where h and U respectively denote the inundation depth and flow velocity during the flood, shows fairly good correlation with the distribution of houses destroyed by flooding. As a possible mitigation measure, the influence of the buildings on the flow was assessed using a numerical experiment for solid buildings arrayed alternately in two lines along the coast. Results show that the buildings can prevent seawater from flowing straight to the city center while maintaining access to the sea.


2017 ◽  
Author(s):  
Ryosuke Akoh ◽  
Tadaharu Ishikawa ◽  
Takashi Kojima ◽  
Mahito Tomaru ◽  
Shiro Maeno

Abstract. Run-up processes of 2011 Tohoku Tsunami into the city of Kamaishi, Japan, were simulated numerically using 2D shallow equations with a new treatment of building footprints. The model imposes the internal hydraulic condition of permeable/impermeable walls at the building footprint outline on unstructured triangular meshes. Digital data of the building footprint approximated by polygons were overlaid on a 1.0 m resolution terrain model. The hydraulic boundary conditions were ascertained by conventional tsunami propagation calculation from the seismic center to nearshore areas. Run-up flow calculations were conducted under the same hydraulic conditions for several cases with different building permeabilities. Comparison of computation results with field data suggests that the case with a small amount of wall permeability gives better agreement than the case of impermeable condition. Spatial mapping of an indicator for run-up flow intensity (Z = Umax × Hmax) shows fairly good correlation with the distribution of houses destroyed by flooding. Results of numerical experiments show that concrete buildings arrayed alternately in two lines can prevent seawater from flowing straight to the city center while maintaining access to the sea. The Z value was significantly lower on streets where many houses were destroyed by the 2011 Tohoku Tsunami.


2011 ◽  
Vol 1 (32) ◽  
pp. 26 ◽  
Author(s):  
Torsten Schlurmann ◽  
Widjo Kongko ◽  
Nils Goseberg ◽  
Danny Hilman Natawidjaja ◽  
Kerry Sieh

Near-field tsunami propagation both in shallow water environments and bore-like wave propagation on land are conducted in this study to obtain fundamental knowledge on the tsunami hazard potential in the city of Padang, Western Sumatra, Republic of Indonesia. As the region proves a huge seismic moment deficit which has progressively accumulated since the last recorded major earthquakes in 1797 and 1833, this investigation focuses on most reasonable seismic sources and possibly triggered nearshore tsunamis in order to develop upgraded disaster mitigations programs in this densely-populated urban agglomeration located on the western shore of Sumatra Island. Observations from continuous Global Positioning Satellite (cGPS) systems and supplementary coral growth studies confirm a much greater probability of occurrence that a major earthquake and subsequent tsunami are likely to strike the region in the near future. Newly surveyed and processed sets of geodata have been collected and used to progress most plausible rupture scenarios to approximate the extent and magnitudes of a further earthquake. Based upon this novel understanding, the present analysis applies two hydronumerical codes to simulate most probable tsunami run-up and subsequent inundations in the city of Padang in very fine resolution. Run-up heights and flow-depths are determined stemming from these most plausible rupture scenarios. Evaluation of outcome and performance of both numerical tools regarding impacts of surge flow and bore-like wave fronts encountering the coast and inundating the city are thoroughly carried out. Results are discussed not only for further scientific purposes, i.e. benchmark tests, but also to disseminate main findings to responsible authorities in Padang with the objective to distribute the most probable dataset of plausible tsunami inundations as well as to address valuable insights and knowledge for effective counter measures, i.e. evacuation routes and shelter building. Following evacuation simulations based on rational assumptions and simplifications reveal a most alerting result as about 260.000 people are living in the highly exposed potential tsunami inundation area in the city of Padang of which more than 90.000 people will need more than 30 min. to evacuate to safe areas.


2021 ◽  
Vol 9 (1) ◽  
pp. 68
Author(s):  
Ioanna Triantafyllou ◽  
Marilia Gogou ◽  
Spyridon Mavroulis ◽  
Efthymios Lekkas ◽  
Gerassimos A. Papadopoulos ◽  
...  

The tsunami generated by the offshore Samos Island earthquake (Mw = 7.0, 30 October 2020) is the largest in the Aegean Sea since 1956 CE. Our study was based on field surveys, video records, eyewitness accounts and far-field mareograms. Sea recession was the leading motion in most sites implying wave generation from seismic dislocation. At an epicentral distance of ~12 km (site K4, north Samos), sea recession, followed by extreme wave height (h~3.35 m), occurred 2′ and 4′ after the earthquake, respectively. In K4, the main wave moved obliquely to the coast. These features may reflect coupling of the broadside tsunami with landslide generated tsunami at offshore K4. The generation of an on-shelf edge-wave might be an alternative. A few kilometers from K4, a wave height of ~1 m was measured in several sites, except Vathy bay (east, h = 2 m) and Karlovasi port (west, h = 1.80 m) where the wave amplified. In Vathy bay, two inundations arrived with a time difference of ~19′, the second being the strongest. In Karlovasi, one inundation occurred. In both towns and in western Turkey, material damage was caused in sites with h > 1 m. In other islands, h ≤ 1 m was reported. The h > 0.5 m values follow power-law decay away from the source. We calculated a tsunami magnitude of Mt~7.0, a tsunami source area of 1960 km2 and a displacement amplitude of ~1 m in the tsunami source. A co-seismic 15–25 cm coastal uplift of Samos decreased the tsunami run-up. The early warning message perhaps contributed to decrease the tsunami impact.


2017 ◽  
Vol 2 (1) ◽  
pp. 39
Author(s):  
Sayyidatul Khoiridah ◽  
Moh Ikhyatul Ibad ◽  
Wiko Setyonegoro

<strong>Validation of Potential Tsunami Based on Rupture Duration Estimation and Tsunami Modeling in the West Sumatran Region (Case Study: Nias 2005 and Mentawai 2010 Earthquakes). </strong>This research was conducted in the earthquake areas in the West Sumatra to determine the characteristics of tsunami generation through estimation of rupture duration and modeling of tsunamis. The case studies were carried out at two incidents: earthquake in Nias on March 28, 2005 and in Mentawai on October 25, 2010. The purpose of this study was to estimate the characteristics of potential earthquaketriggering tsunamis in the western region of Sumatra based on the duration of rupture, which was then validated by a tsunami modeling. A method for validation was carried out by analyzing a potency of a tsunami based on the earthquake source (source modeling), the propagation of the tsunami wave (ocean modeling), and the height of the tsunami (run-up tsunami). The results showed the duration of the earthquakes in Nias rupture (2005) and Mentawai rupture (2010) were more than 50 seconds, thus, both earthquakes promoted tsunami. The results of tsunami propagation revealed that the tsunami had spread to some areas near the source of the Nias earthquake after 58 minutes and 20 seconds. The area affected by the Nias tsunami included the Salaut island, a section at northwestern Simeulue, a section at southwestern Simeulue, Babi island, Bangkuru island, Tuangku island, Singkil, Sarangbaung, Asu island, southwestern Lagundri Nias, and Northwestern Batu island. The highest tsunami hit Babi island with the magnitude of 13.80 m. Moreover, the tsunami affected the wider areas in Mentawai including the beaches of Batimonga, Ghobi, Tumale, Pasangan, Sabeugunggung, Malacopa, and Asahan with the highest value of run-up on Malacopa beach was 8.17 m.


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


Author(s):  
S. Antoni ◽  
R. A. Bantan ◽  
H. M. Taki ◽  
W. Anurogo ◽  
M. Z. Lubis ◽  
...  

<p><strong>Abstract.</strong> The southern coastal areas of Java are highly vulnerable areas of earthquake hazard because they located 200&amp;thinsp;km from the southern Java subduction zone. This zone is an active seismicity area, resulting in many tectonic earthquakes caused by collisions and shift between the plates. This shift when it occurs under the sea surface with a large power intensity can lead to a tsunami. This research conducted to identify the extent of agricultural land (AL) damaged by the tsunami for disaster risk management and mitigation. Numerical modelling was performed to determine the run-up height of the tsunami through numerical data. This model was designed using the worst-case scenario. The tsunami inundation model analysed from the coming wave (run-up) with a height of 30&amp;thinsp;m. This model used scenarios of tsunami run-up height in a coastline, coarse coefficient and slope. The data extracted using remote sensing (RS) data was the slope obtained from the ASTER image GDEM data, the agricultural land productivity data obtained using NDVI vegetation index transformation and field data on productivity, and tsunami hazard analysis with various altitude scenarios using run-up model impact on existing AL conditions. The elevation-data was obtained from the 15&amp;thinsp;m ASTER image data (GDEM) that was reclassified into a slope class map. The risk of destruction of AL based on wave height extracted by using RS data generated rice risk loss index of AL of 190.5071&amp;thinsp;tons for a height of 1&amp;thinsp;m, 1851.522&amp;thinsp;tons for a height of 5&amp;thinsp;m, 7402.71&amp;thinsp;tons for a height of 10&amp;thinsp;m, 10776.47&amp;thinsp;tons to a height of 15&amp;thinsp;m, 11823.9&amp;thinsp;tons for height 20&amp;thinsp;m, and 11824.27&amp;thinsp;tons to a height of 30&amp;thinsp;m.</p>


Sign in / Sign up

Export Citation Format

Share Document