scholarly journals Synthesis and characterization of nickel oxide and evaluation of its catalytic activities for degradation of methyl orange in aqueous medium

2020 ◽  
Vol 3 (2) ◽  
pp. 47
Author(s):  
Muhammad Saeed ◽  
Muhammad Amjed ◽  
Attaul Haq ◽  
Muhammad Usman ◽  
Shahid Adeel

This study focuses on synthesis of nickel oxide catalyst and exploration of its catalytic activities for degradation of methyl orange in aqueous medium. Nickel oxide was prepared sole-gel method using nickel nitrate haxahydrate and citric acid as precursor materials. X-ray diffractometry and scanning electron microscopy were used for characterization of prepared nickel oxide particles. The prepared particles were used as the catalysts for the degradation of Methyl Orange in aqueous medium. The effects of different parameters on degradation of methyl orange were investigated. The degradation of methyl orange followed the Eley-Rideal (E-R) mechanism. The apparent activation energies for degradation of methyl orange determined was found as 36.4 kJ/mol.

2019 ◽  
Vol 12 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Rifat Mohammed Dakhil ◽  
Tayser Sumer Gaaz ◽  
Ahmed Al-Amiery ◽  
Mohd S. Takriff ◽  
Abdul Amir H. Kadhum

Abstract. The present work focuses on the photocatalytic degradation of methyl orange (MO) on erbium trioxide nanoparticles (Er2O3 NPs). In this study, Er2O3 nanoparticles were synthesized and fully characterized via various techniques, including X-ray diffraction, UV–visible spectroscopy and scanning electron microscopy techniques. The results revealed that the photocatalytic activity of the prepared Er2O3 NPs was manifested in MO photodegradation. The optimum efficiency obtained was 16 %.


2019 ◽  
Vol 13 (26) ◽  
pp. 171-177
Author(s):  
Ban M. Al-Shabander

Titanium dioxide nanorods have been prepared by sol-gel templatemethod. The structural and surface morphology of the TiO2 nanorods wasinvestigated by X-ray diffraction (XRD) and atomic force microscopy(AFM), it was found that the nanorods produced were anatase TiO2 phase.The photocatalytic activity of the TiO2 nanorods was evaluated by thephoto degradation of methyl orange (MO). The relatively higherdegradation efficiency for MO (D%=78.2) was obtained after 6h of exposedto UV irradiation.


2015 ◽  
Vol 39 (8) ◽  
pp. 6171-6177 ◽  
Author(s):  
Mingshan Fan ◽  
Bo Hu ◽  
Xu Yan ◽  
Chengjie Song ◽  
Tianjun Chen ◽  
...  

Heterostructure complexes of Cu2O/NaNbO3exhibited high catalytic activities on the degradation of methyl orange.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Saeed ◽  
Muhammad Ibrahim ◽  
Majid Muneer ◽  
Nadia Akram ◽  
Muhammad Usman ◽  
...  

Abstract Here in, we report the synthesis and characterization of ZnO–TiO2 composite as a potential photo catalyst for photo degradation of methyl orange under UV irradiation. ZnO–TiO2 with 1:1 ratio was synthesized via wet incipient impregnation method using TiO2 and Zn(NO3)2 ⋅ 6H2O as precursor material and the prepared composite was characterized by XRD, EDX and SEM. The synthesized composite was employed as photo catalyst for photo degradation of methyl orange. The photo degradation results showed that ZnO–TiO2 exhibited better catalytic performance than ZnO and TiO2 alone. The methyl orange photo degradation efficiency was determined to be 98, 75 and 60% over ZnO–TiO2, ZnO and TiO2 respectively using 50 mL solution of 100 mg/L at 40 °C for 120 min. The ZnO–TiO2 catalyzed photo degradation of methyl orange followed pseudo-first-order kinetic in terms of Langmuir–Hinshelwood mechanism.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 807
Author(s):  
Zen Maeno ◽  
Xiaopeng Wu ◽  
Shunsaku Yasumura ◽  
Takashi Toyao ◽  
Yasuharu Kanda ◽  
...  

In this study, the characterization of In-exchanged CHA zeolite (In-CHA (SiO2/Al2O3 = 22.3)) was conducted by in-situ X-ray diffraction (XRD) and ammonia temperature-programmed desorption (NH3-TPD). We also prepared other In-exchanged zeolites with different zeolite structures (In-MFI (SiO2/Al2O3 = 22.3), In-MOR (SiO2/Al2O3 = 20), and In-BEA (SiO2/Al2O3 = 25)) and different SiO2/Al2O3 ratios (In-CHA(Al-rich) (SiO2/Al2O3 = 13.7)). Their catalytic activities in nonoxidative ethane dehydrogenation were compared. Among the tested catalysts, In-CHA(Al-rich) provided the highest conversion. From kinetic experiments and in-situ Fourier transform infrared (FTIR) spectroscopy, [InH2]+ ions are formed regardless of SiO2/Al2O3 ratio, serving as the active sites.


2012 ◽  
Vol 616-618 ◽  
pp. 1667-1670
Author(s):  
Ting Tang ◽  
Hong Quan Deng ◽  
Qi Ying Jiang ◽  
Ji Chuan Huo ◽  
Shun Hua Hu

Bi-La composite oxide was prepared by thermal decomposition of molecular precursor of BiLa(dtpa)(NO3)•3.5H2O (dtpa=Diethylene triaminepentaacetic). The effect of calcinated temperature on structure was discussed by X-ray powder diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic performance of samples prepared was discussed through the degradation of methyl orange. The results show that Bi-La composite oxide prepared at 500°C exhibits the best photocatalytic activity for the degradation of methyl orange (20mg/L) and the optimum amount of photocatalyst is 1.0 g/L.


Sign in / Sign up

Export Citation Format

Share Document