scholarly journals Preparation of TiO2 nanorods by Sol–Gel template method and measured its photo- catalytic activity for degradation of methyl orange

2019 ◽  
Vol 13 (26) ◽  
pp. 171-177
Author(s):  
Ban M. Al-Shabander

Titanium dioxide nanorods have been prepared by sol-gel templatemethod. The structural and surface morphology of the TiO2 nanorods wasinvestigated by X-ray diffraction (XRD) and atomic force microscopy(AFM), it was found that the nanorods produced were anatase TiO2 phase.The photocatalytic activity of the TiO2 nanorods was evaluated by thephoto degradation of methyl orange (MO). The relatively higherdegradation efficiency for MO (D%=78.2) was obtained after 6h of exposedto UV irradiation.

2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2014 ◽  
Vol 1004-1005 ◽  
pp. 962-966
Author(s):  
Lu Sheng Chen ◽  
Huan Shuang Zhang ◽  
Shu Lian Liu ◽  
Wen Hua Song ◽  
Chao Liu ◽  
...  

In this work, samarium and antimony (Sm–Sb) codoped tin oxide (SnO2) films have been successfully prepared on titanium (Ti) substrate by a facile sol gel method. The samples were characterized by X–ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The composite film materials were used as anode for the electro-degradation of methyl orange solution. Two effective factors of electro–catalytic properties namely, the content of Sm in the SnO2 samples and the calcination temperature, have been optimized based on the electro-degradation experiments. A moderately calcination temperature of 873 K and 1.0% Sm doping owned the best performance. The smaller grain sizes and optical band gap of the SnO2 by introduction of the Sm improved electro-catalytic activity.


1999 ◽  
Vol 596 ◽  
Author(s):  
P. S. Dobal ◽  
R. R. Das ◽  
B. Roy ◽  
R. S. Katiyar ◽  
S. Jain ◽  
...  

AbstractRare earth (Gd+3 and Ce+3) substitution on La+3 sites of the sol-gel prepared Pb0.85La0.15TiO3 films is studied using x-ray diffraction, atomic force microscopy, Raman scattering, and electrical characterization techniques. With increasing content of rare earths an increase in the lattice tetragonality was evidenced from x-ray data. Raman spectra obtained form Pb0.85La0.15-xCexTiO3 (x=0.0–0.07) and Pb0.85La0.15-xGdxTiO3 (x=0.0–0.15) films show features characteristics of PbTiO3 perovskite. Frequency variations of the lowest soft mode as a function of the composition x and temperature corraborate the increased tetragonality in these films. The ferroelectric transition temperature, dielectric constant, and coercive field was found to increase with Gd content. The phase transition temperature and polarization values increase up to 5 at.% Ce doping while they decrease above that composition due to the reduced domain wall mobility caused by Ce precipitation. A slight increase in the surface roughness was observed with increasing rare earth content in these films.


2010 ◽  
Vol 148-149 ◽  
pp. 1144-1147
Author(s):  
Xiang Rong Zhu ◽  
Lin Feng Lu ◽  
Hong Lie Shen

NixZn1-xFe2O4 (x=0.4, 0.6) powders are synthesized by sol-gel technique. The X-ray diffraction (XRD) measurements show their polycrystalline spinel structural characteristics. Both XRD and Atomic Force Microscopy demonstrate the samples are nanosized. At room temperature typical soft magnetism is exhibited by the samples. The reflection attenuation resulting from microwave absorption would reach to 1.9 dBm over the frequency range 6 GHz - 10 GHz when the samples are paved on a 10 cm  10 cm square aluminum plate with a thickness of about 0.35 mm.


2015 ◽  
Vol 814 ◽  
pp. 39-43 ◽  
Author(s):  
Lei Lei Chen ◽  
Hong Mei Deng ◽  
Ke Zhi Zhang ◽  
Ling Huang ◽  
Jian Liu ◽  
...  

Cu2MnSnS4 thin film was successfully prepared by a sol-gel technique on soda lime glass substrate from metal salts and thiourea. The structural and morphological properties of the fabricated film were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The combination of the X-ray diffraction results and Raman spectroscopy reveal that this obtained layer is composed by Cu2MnSnS4 phase and has a stannite structure with preferential orientation along the (112) direction. The scanning electron microscopy and atomic force microscopy results show that the synthesized thin film is smooth and compact without any visible cracks or pores. The band gap of the Cu2MnSnS4 thin film is about 1.29 eV determined by the UV-vis-NIR absorption spectra measurement, which indicates it has potential applications in solar cells.


2005 ◽  
Vol 475-479 ◽  
pp. 3693-3696
Author(s):  
Wen Xiu Cheng ◽  
Ai Li Ding ◽  
Ping Sun Qiu

Amorphous and crystalline (Zr0.8,Sn0.2)TiO4 (ZST) thin films deposited on Si(100) substrates have been prepared by a sol-gel process. The crystal structure and surface morphologies of the thin films have been studied by X-ray diffraction and atomic force microscopy. The crystalline ZST films on Si(100) substrata with a (111) orientation The refractive index n and extinction coefficient k of the amorphous and crystalline thin films were obtained by spectroscopy ellipsometry as a function of phone energy in the range from 0.7 to 5.4 eV. The absorption edges for amorphous and crystalline ZST are 3.83 and 3.51eV of indirect–transition type respectively.


2012 ◽  
Vol 10 (5) ◽  
pp. 1574-1583 ◽  
Author(s):  
Dalia Jonynaite ◽  
Darius Jasaitis ◽  
Rimantas Raudonis ◽  
Algirdas Selskis ◽  
Remigijus Juskenas ◽  
...  

AbstractIn the present work, the formation of cobalt aluminium spinel (CoAl2O4) as well as novel cobalt neodymium-aluminates with nominal compositions of CoAl1.75Nd0.25O4, CoAl1.5Nd0.5O4 and CoAlNdO4 by an aqueous sol-gel process and the sinterability of the products are investigated. The metal ions, generated by dissolving starting materials of metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the mixed metal ceramics. The phase purity of the synthesized compounds was characterized by powder X-ray diffraction analysis and infrared spectroscopy. The microstructural evolution and morphological features of the products were studied by scanning electron microscopy and atomic force microscopy, which together with the optical characterization of these new compounds showed that the sol-gel-derived materials could be successfully used as effective cobalt-based ceramic pigments.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Serge Zhuiykov ◽  
Eugene Kats ◽  
Tomoaki Sato ◽  
Hiroshi Ikeda ◽  
Norio Miura

Quasi-two-dimensional (Q2D) Nb 2 O 5 nanoflakes were synthesized by combined sol–gel/exfoliation method with the average thickness of 10–25 nm. Their structural, surface- and electro-chemical properties were closely studied and analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), conductive atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques.


2011 ◽  
Vol 356-360 ◽  
pp. 574-578
Author(s):  
Xiao Jing Li ◽  
Guan Jun Qiao ◽  
Jin Ren Ni

Nanometer titanium dioxide films supported on glass, quartz, molybdenum, and aluminum were prepared by sol-gel method. The loaded titanium dioxide films were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and photocatalytic degradation of aqueous crystal violet. The titanium dioxide films supported on different substrates were all composed of polycrystalline nanoparticles, which belonged to single-phase anatase, and displayed different morphology after sintering at 773 K for 1 h. Some elements in the substrate made of noncrystal appeared on the surface of titanium dioxide films. The experiment about basic crystal violet degradation displayed the photocatalysis activity of titanium oxide films supported on the molybdenum was better.


Sign in / Sign up

Export Citation Format

Share Document