scholarly journals IMPLEMENTATION OF SECURITY THROUGH SIMPLE SYMMETRIC KEY ALGORITHM BASED ON MODULO 37

2012 ◽  
Vol 3 (2) ◽  
pp. 335-338 ◽  
Author(s):  
Prakash Kuppuswamy ◽  
Dr. Saeed Q Y Al-Khalidi

The demand for adequate security to electronic data system grows high over the decades. Security is the one of the biggest concern in different type of networks. Due to diversify nature of network, security breaching became a common issue in different form of networks. Solutions for network security comes with concepts like cryptography in which distribution of keys have been done. Encryption and key generation became a vital tool for preventing the threats to data sharing and tool to preserve the data integrity so we are focusing on security enhancing by enhancing the level of encryption in network. This study’s main goal is to reflect the importance of security in network and provide the better encryption technique for currently implemented encryption techniques in simple and powerful method. In our research we have proposed a modular 37 and select any number and calculate inverse of the selected integer using modular 37. The symmetric key distribution should be done in the secured manner. Also, we examine the performance of our new SSK algorithm with other existing symmetric key algorithm.

2018 ◽  
Vol 11 (2) ◽  
pp. 177-186
Author(s):  
Desi Nurnaningsih ◽  
Angga Aditya Permana

ABSTRAKData sangatlah berharga bagi semua pengguna komputer, belakangan ini kriptografi menjadi metode yang digunakan dalam mengamankan data. Kriptografi adalah ilmu yang mempelajari teknik-teknik matematika dalam mengamankan suatu informasi atau pesan asli (Plainteks) menjadi sebuah teks tersembunyi (Chiperteks) dan kemudian di ubah menjadi pesan asli kembali. Kriptografi mempunyai tiga unsur penting yaitu pembangkitan kunci, enkripsi dan deskipsi. Dalam kriptografi di kenal algoritma block chiper yang didalamnya terdapat AES (Anvanced Encyption Standard) merupakan bagian dari Modern Symmetric Key Cipher, algoritma ini menggunakan kunci yang sama pada saat proses enkripsi dan deskripsi sehingga data yang kita miliki akan sulit dimengerti maknanya. Teknik algoritma tersebut digunakan untuk mengkonversi data dalam bentuk kode-kode tertentu, untuk tujuan agar informasi yang tersimpan tidak bisa di baca siapa pun kecuali orang-orang yang berhak. Oleh karena itu, sistem keamanan data sangat di perlukan untuk menjaga kerahasian informasi agar tetap terjaga. ABSTRACTData is a valueable  for all computer users, cryptography is the one of  method used to securing data. Cryptography is the study of mathematical techniques in securing an information or original message (Plainteks) into a hidden text (Chiperteks) and then converted into the original message again. Cryptography has three important elements, first is key generation, second is encryption and latetly is description. In cryptography known as cipher block algorithms in which AES (Advanced Encyption Standard) is part of Modern Symmetric Key Cipher, this algorithm uses the same key during the encryption and description process so that the data we have will be difficult to understand. The algorithm technique is used to convert data in the form of certain codes, so that the information stored cannot be read by anyone except those who are entitled. Therefore, the data security system is very necessary to maintain the confidentiality of information. 


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 208
Author(s):  
Xiangqing Wang ◽  
Jie Zhang ◽  
Bo Wang ◽  
Kongni Zhu ◽  
Haokun Song ◽  
...  

With the increase in the popularity of cloud computing and big data applications, the amount of sensitive data transmitted through optical networks has increased dramatically. Furthermore, optical transmission systems face various security risks at the physical level. We propose a novel key distribution scheme based on signal-to-noise ratio (SNR) measurements to extract the fingerprint of the fiber channel and improve the physical level of security. The SNR varies with time because the fiber channel is affected by many physical characteristics, such as dispersion, polarization, scattering, and amplifier noise. The extracted SNR of the optical fiber channel can be used as the basis of key generation. Alice and Bob can obtain channel characteristics by measuring the SNR of the optical fiber channel and generate the consistent key by quantization coding. The security and consistency of the key are guaranteed by the randomness and reciprocity of the channel. The simulation results show that the key generation rate (KGR) can reach 25 kbps, the key consistency rate (KCR) can reach 98% after key post-processing, and the error probability of Eve’s key is ~50%. In the proposed scheme, the equipment used is simple and compatible with existing optic fiber links.


Laser Physics ◽  
2010 ◽  
Vol 20 (5) ◽  
pp. 1210-1214 ◽  
Author(s):  
F. A. A. El-Orany ◽  
M. R. B. Wahiddin ◽  
M. -A. Mat-Nor ◽  
N. Jamil ◽  
I. Bahari

2014 ◽  
Vol 33 ◽  
pp. 1460361 ◽  
Author(s):  
Lachlan J. Gunn ◽  
James M. Chappell ◽  
Andrew Allison ◽  
Derek Abbott

While information-theoretic security is often associated with the one-time pad and quantum key distribution, noisy transport media leave room for classical techniques and even covert operation. Transit times across the public internet exhibit a degree of randomness, and cannot be determined noiselessly by an eavesdropper. We demonstrate the use of these measurements for information-theoretically secure communication over the public internet.


2020 ◽  
Vol 10 (5) ◽  
pp. 6187-6190
Author(s):  
A. S. Alshammari

The keyspace of a cryptography system must be long enough in order to protect it from brute force attacks. The One-Time Pad (OTP) encryption is unconditionally secure because of its truly random keystream that is used only once. This paper proposes a new chaotic symmetric cryptosystem approach, comparable to OTP. The proposed system utilizes two Lorenz generators, a main and an auxiliary, where the aim of the second one is to make one of the main Lorenz generator’s parameters to vary continually with time in a chaotic manner. This technique was built on digitizing two Lorenz chaotic models to increase the security level. The scrambling scheme was developed and the Lorenz stream cipher binary stream successfully passed the NIST randomness test. The cryptosystem showed a high degree of security, as it had a keyspace of 2576, and it was compared with existing symmetric key cryptography systems, such as DES, 3DES, AES, Blowfish, and OTP.


Author(s):  
Chandrakala B M ◽  
S C Lingareddy

<p>In recent days, data sharing has provided the flexibility to share the data, store the data, and perform operation on data virtually as well as cost effectively. Data sharing in cloud is one of the feature, which is being popular and widely accepted. However, the concern here is to ensure the data security and this has led the researcher to research in this area. To provide the security several Proxy re-encryption scheme has been introduced, however all these method lacks of efficiency. Hence In this paper, we propose a scheme known as ALBC (Adaptive Lattice Based Cryptography), this scheme follows the two phase i.e. encryption and Re-encryption. Encryption phase has few algorithms such as Key_Gen, Enc, Dec. Similarly ALBC Re-Enc has five algorithm i.e. Key_Gen, Key_ReGen,  Enc, Re-Enc, Dec. our algorithm not only provides the security but also solves the problem of RL(Ring-learning) with errors problems. In order to evaluate, our algorithm is compared with the existing model in terms of encryption time, decryption time, re-encryption time, key generation  and key regeneration by varying the various key size. When we observe the comparative analysis, it is observed that our algorithm outperforms the existing algorithm.</p>


2017 ◽  
Vol 6 (3) ◽  
pp. 219-227
Author(s):  
Edwin R. Arboleda ◽  
Joel L. Balaba ◽  
John Carlo L. Espineli

Cryptography, which involves the use of a cipher, describes a process of encrypting information so that its meaning is hidden and thus, secured from those who do not know how to decrypt the information. Cryptography algorithms come with the various types including the symmetric key algorithms and asymmetric key algorithms. In this paper, the authors applied the most commonly used algorithm, which is the RSA algorithm together with the Chaos system and the basic security device employed in the worldwide organizations which is the Data Encryption Standard (DES) with the objective to make a hybrid data encryption. The advantage of a chaos system which is its unpredictability through the use of multiple keys and the secrecy of the RSA which is based on integer factorization’s difficulty is combined for a more secure and reliable cryptography. The key generation was made more secure by applying the DES schedule to change the keys for encryption. The main strength of the proposed system is the chaotic variable key generator that chages the value of encrypted message whenever a different number of key is used. Using the provided examples the strength of security of the proposed system was tested and demonstrated.


Sign in / Sign up

Export Citation Format

Share Document