scholarly journals Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

2012 ◽  
Vol 18 (2) ◽  
pp. 305-314 ◽  
Author(s):  
R. Muthuraj ◽  
S. Srinivas ◽  
Lourdu Immaculate

A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and ?1?0, Da??, a??.

2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110408
Author(s):  
Imran Khan ◽  
Hakeem Ullah ◽  
Mehreen Fiza ◽  
Saeed Islam ◽  
Asif Zahoor Raja ◽  
...  

In this study, a new computing model by developing the strength of feed-forward neural networks with Levenberg-Marquardt Method (NN-BLMM) based backpropagation is used to find the solution of nonlinear system obtained from the governing equations of unsteady squeezing flow of Heat and Mass transfer behaviour between parallel plates. The governing partial differential equations (PDEs) for unsteady squeezing flow of Heat and Mass transfer of viscous fluid are converting into ordinary differential equations (ODEs) with the help of a similarity transformation. A dataset for the proposed NN-BLMM is generated for different scenarios of the proposed model by variation of various embedding parameters squeeze Sq, Prandtl number Pr, Eckert number Ec, Schmidt number Sc and chemical-reaction-parameter [Formula: see text]. Physical interpretation to various embedding parameters is assigned through graphs for squeeze Sq, Prandtl Pr, Eckert Ec, Schmidt Sc and chemical-reaction-parameter [Formula: see text]. The processing of NN-BLMM training (T.R), Testing (T.S) and validation (V.L) is employed for various scenarios to compare the solutions with the reference results. For the fluidic system convergence analysis based on mean square error (MSE), error histogram (E.H) and regression (R.G) plots is considered for the proposed computing infrastructures performance in term of NN-BLMM. The results based on proposed and reference results match in term of convergence up to 10-02 to 10-08 proves the validity of NN-BLMS. The Optimal Homotopy Asymptotic Method (OHAM) is also used for comparison and to validate the results of NN-BLMM.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
R. A. Mohamed ◽  
S. Z. Rida ◽  
A. A. M. Arafa ◽  
M. S. Mubarak

Abstract In this paper, the influence of chemical reaction and heat source/sink on an unsteady magnetohydrodynamics (MHD) nanofluid flow that squeezed between two radiating parallel plates embedded in porous media is investigated analytically. We consider water as base fluid and aluminum oxide (Al2O3) as its nanoparticle. We reduced the basic partial differential equations to ordinary differential equations which are solved by the homotopy analysis method (HAM). The effects of the squeeze number, permeability parameter of porous media, Hartmann number, thermal radiation parameter, Prandtl number, heat source/sink parameter, Eckert number, Schmidt number, and scaled parameter of chemical reaction on the flow, heat, and mass transfer are considered and assigned to graphs. The physical quantities such as Sherwood number, Nusselt number, and skin friction coefficient are computed for Al2O3–water, TiO2–water, Ag–water, and Cu–water nanofluids and assigned through graphs.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 818
Author(s):  
Sivakami. L. ◽  
Govindarajan A. ◽  
E. P. Siva

In this article , the nonlinear Unsteady MHD Free  convective Two Immiscible Fluid Flows in a vertical Permeable plate with Heat and Mass Transfer under chemical reaction and Heat source have been studied here. The conservation equations are solved analytically under the boundary conditions by using perturbation technique. The influence of various non dimensional parameters namely, Magnetic parameter, Prandtl number, chemical reaction,, Thermal radiation parameter and Schmidt number are examined on the velocity, Temperature, Concentration fields in detail. It is noted that  the velocity is decreased with increasing Heat source under chemical reaction parameter. But increasing suction parameter decreases the velocity 


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. M. Salem

A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD) micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation), and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air) with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.


Sign in / Sign up

Export Citation Format

Share Document