A Comparison of Rheological Models and Experimental Data of Metallocene Linear Low Density Polyethylene Solutions as a Function of Temperature and Concentration

2016 ◽  
Vol 12 (3) ◽  
pp. 4322-4339
Author(s):  
Salah Hamza

Knowledge of rheological properties of polymer and their variation with temperature and concentration have been globally important for processing and fabrication of polymers in order to make useful products. Basheer et al. [1] investigated, experimentally, the changes in rheological properties of metallocene linear low density polyethylene (mLLDPE) solutions by using a rotational rheometer model AR-G2 with parallel plate geometry. Their work covered the temperature range from  to  and  concentration from  to . In this paper, we reconsider Basheer work to describe the rheological behavior of mLLDPE solutions and its dependence on concentration and temperature.Until now, several models have been built to describe the complex behavior of polymer fluids with varying degrees of success. In this article, Oldroyd 4-constant, Giesekus and Power law models were tested for investigating the viscosity of mLLDPE solution as a function of shear rate. Results showed that Giesekus and power law models provide the best prediction of viscosity for a wide range of shear rates at constant temperature and concentration. Therefore, Giesekus and power law models were suitable for all mLLDPE solutions while Oldroyd 4-constant model doesn't.A new proposed correlation for the viscosity of mLLDPE solutions as a function of shear rate, temperature and concentration has been suggested. The effect of temperature and concentration can be adequately described by an Arrhenius-type and exponential function respectively. The proposed correlation form was found to fit the experimental data adequately.

Author(s):  
Ali Farhangiyan Kashani ◽  
Hossein Abedini ◽  
Mohammad Reza Kalaee

In this paper, an industrial linear low density polyethylene (LLDPE) production process including two serried fluidized bed reactors (FBR) and other process equipment was completely simulated in steady state mode. Both of FBRs were considered like two serried continuous stirred tank reactors (CSTR). In this simulation, a kinetic model that is based on a multiple active site heterogeneous Ziegler-Natta catalyst was used for simulation of reactions in two FBRs. Simulator by using this model is able to predict the important attributes of LLDPE like melt flow index (MFI), density (ρ), polydispersity (PDI), numerical and weight average molecular weight (Mn, Mw) and co-polymer molar fraction (SFRAC). On the other hand, this simulator can be applied in wide range of changing in inlet operating conditions. The results of the simulation are compared with industrial data of LLDPE plant. A good agreement is observed between the simulator predictions and actual plant data. Finally, by using of the simulator, the steady state operating conditions for producing different grades of polyethylene are obtained.


2019 ◽  
Vol 39 (5) ◽  
pp. 422-431 ◽  
Author(s):  
Arkadiusz Kloziński ◽  
Paulina Jakubowska

Abstract The article describes an investigation into the effect of a slip agent on the rheological properties of low-density polyethylene. As a slip modifier, oleamide was used in the amounts of 0.5, 1.0, 2.0, 3.0 and 4.0 wt.%, respectively. The process of polymer modification was carried out in a twin-screw extrusion process. The effect of the slip agent on the mass flow rate index was determined. The specific plasticisation energy of the modified polymer was also assessed based on the change in the torque of a batch mixer. The assessment of the effect of the addition of oleamide on the change in the flow and viscosity curves was made using an off-line (plastometer) and an in-line (extruder rheometer) measuring technique. The rheological parameters were determined based on the Ostwald-de-Waele power law model. The operation of the plastometer was brought closer to the principles of operation of the capillary rheometer by applying variable piston loading. In in-line measurements, an extrusion head with replaceable cylindrical dies was used. Using two rheological measuring techniques made it possible to determine the low-density polyethylene viscosity variations and the values of flow power law index (n) and consistency factor (K) in a wide shear rate range.


2016 ◽  
Vol 53 (1) ◽  
pp. 83-105 ◽  
Author(s):  
Peyman Shahi ◽  
Amir Hossein Behravesh ◽  
Ali Haghtalab ◽  
Ghaus Rizvi ◽  
Fatemeh Goharpei

In this research work, foaming behavior of selected polyethylene blends was studied in a solid-state batch process, using CO2 as the blowing agent. Special emphasis was paid towards finding a relationship between foamability and thermal and rheological properties of blends. Pure high-density polyethylene, linear low-density polyethylene, and their blends with two weight fraction levels of high-density polyethylene (10 and 25%wt.) were examined. The dry blended batches were mixed using an internal mixer in a molten state, and then the disk-shaped specimens, 1.8 mm in thickness, were produced for foaming purposes. The foaming step was conducted over a wide range of temperatures (120–170℃), and the overall expansion and cellular morphology were evaluated via density measurements and captured SEM micrographs, respectively. Three-dimensional structural images were also captured using a high resolution X-ray micro CT for different foamed samples and were compared. Rheological and DSC tests for the virgin and blends were also performed to seek for a possible correlation with the formability. Based on the results, blended polyethylene foams exhibited remarkable expansion and highly enhanced cell structure compared to pure polymers. Bulk density, as low as 0.33 g/cm3, was obtained for blends, while for the virgin high-density polyethylene  and linear low-density polyethylene, bulk density lower than 0.5 g/cm3 was not attainable. The lowest density was observed at a foaming temperature of 10–20℃ above the melting (peak) temperature obtained via DSC test. Rheological characteristics, including storage modulus and cross-over frequency value, were also found to be the indicators for the materials foaming behavior. Moreover, blends with 25% wt. of high-density polyethylene exhibited the highest expansion values over a wider range of temperature compared with 90% linear low-density polyethylene/10% high-density polyethylene.


Author(s):  
Zurriye Yilmaz ◽  
Mehmet Dogan ◽  
Mahir Alkan ◽  
Serap Dogan

In the food industry, rheological properties, such as viscosity, shear rate, and shear stress, are the most important parameters required in the design of a technological process. Therefore, in this study, we determined the flow behavior and the time-dependent flow properties of Turkish Delight (TD) in the temperature range of 25-75°C using a capillar rheometer. The structure and thermal properties of TD were investigated by XRD and a simultaneous DTA/TG analysis. The shear rate values ranged from 5 to 300s-1. We found that: (i) TD behaved as non- Newtonian pseudoplastic foodstuff; (ii) while the measurement temperature increased, viscosity decreased; and (iii) TD was a rheopectic material. The effect of temperature on viscosity was described by means of the Arrhenius equation. The activation energies for the flow of pseudoplastic TD varied from 50.1-74.2 kJ/mol, depending on shear rate. Three models were used to predict the flow behavior of TD, namely, the Power law, Bingham and Casson models. The Power law model adequately described well the flow behavior of TD at different temperatures.


2012 ◽  
Vol 626 ◽  
pp. 615-619 ◽  
Author(s):  
B.Y. Lim ◽  
Salmah Husseinsyah ◽  
Pei Leng Teh

The rheological properties of the low density polyethylene (LDPE)/palm kernel shell (PKS) composites were studied by using a melt flow indexer. The silane treated and untreated composites were investigated. Both of the composites were further varied by amount of filler loading from 10 to 40 php. The testing temperature of composites varied from 180 to 210 °. It was found out that the MFI values of the composites increased with temperature but decreased with a rise of filler loading. The treated LDPE/PKS composites exhibited lower MFI values compared to untreated composites, which indicated the increase of viscosity. Thus, a better adhesion between the LDPE matrix and PKS was established. The effect of temperature on the viscosity of LDPE/PKS composites was found to obey the Arrhenius equation. The results showed that the activation energy of the composites increased with the increase of filler loading. However, at similar filler loading, the silane treated composites showed lower activation energy compared to untreated composites, leading to the reduction of their temperature sensitivity.


Sign in / Sign up

Export Citation Format

Share Document