scholarly journals Effects of solidification structure on tensile properties in SiC particulate-reinforced cast aluminum alloy composites.

1994 ◽  
Vol 44 (4) ◽  
pp. 222-228 ◽  
Author(s):  
Shinji KUMAI ◽  
Jianqun HU ◽  
Makoto ISHIKURA ◽  
Yakichi HIGO ◽  
Shigetomo NUNOMURA
2014 ◽  
Vol 875-877 ◽  
pp. 1397-1405 ◽  
Author(s):  
G. Dinesh Babu ◽  
M. Nageswara Rao

Cast aluminum alloy 354 is used extensively for production of critical automobile components, owing to its excellent castability and attractive combination of mechanical properties after heat-treatment. With the advent of higher performance engines, there has been a steady demand to further improve the mechanical behavior of the castings made of the alloy, among others, through improvements in processing. The present study explores the possibility of improving tensile properties of the alloy by adopting certain non-conventional aging treatments. The non-conventional treatments include aging cycles similar to T6I4 and T6I6 referred to in the published literature, artificial aging in two steps instead of in single step and artificial aging preceded by various natural aging times. The results show that none of these non-conventional treatments leads to improvement of all tensile properties compared to the standard T61 treatment. Significant hardening takes place in the alloy due to natural aging. Changing the time of natural aging preceding artificial aging was found to have little effect on tensile properties.


2014 ◽  
Vol 875-877 ◽  
pp. 1429-1436 ◽  
Author(s):  
G. Dinesh Babu ◽  
M. Nageswara Rao

Cast aluminum alloy 354 is used extensively for production of critical automobile component, owing to its excellent castability and attractive combination of mechanical properties. With the advent of higher performance engines, there has been a steady demand to further improve the mechanical behavior of the alloy, among others, through improvements in processing. The present study explores the possibility of improving mechanical behavior and quality levels of the alloy by adopting certain non-conventional aging treatments. Quality indices Q and QC have been used for quality rating. The non-conventional treatments include aging cycles similar to T6I4 and T6I6 referred to in the published literature, artificial aging in two steps instead of in single step and artificial aging preceded by various natural aging times. The results show that none of the non-conventional treatments leads to improvement of all tensile properties compared to the standard T61 treatment. However, some specific treatments could be identified which lead to a comparable combination of tensile properties and a shade higher quality level. Increasing the time of preceding natural aging does not help in improving the tensile properties after artificial aging.


1995 ◽  
Vol 45 (6) ◽  
pp. 309-314 ◽  
Author(s):  
Jianqun HU ◽  
Shinji KUMAI ◽  
Akinori SEKIKAWA ◽  
Yakichi HIGO ◽  
Shigetomo NUNOMURA

2012 ◽  
Vol 445 ◽  
pp. 277-282 ◽  
Author(s):  
Xue Zhi Zhang ◽  
Kazi Ahmmed ◽  
Meng Wang ◽  
Henry Hu

In this study a number of thermal treatment schemes over a wide range of temperatures between 120˚ to 350˚ C and times (30 120 minutes) have been experimented in an effort to understand the effect of thermal treatment on tensile properties of vacuum die cast modified aluminum alloy A356. The results show that, the morphology of eutectic silicon has a sound effect on the tensile properties of the tested alloy. The content of magnesium-based intermetallic phases, their morphology and distribution throughout the matrix affect the mechanical properties of the aged alloy as well. The reduction in the strengths of the alloy treated at 350°C for two hours should be at least attributed partly to the absence of the magnesium-based intermetallic phase. However the presence of sufficient amount of magnesium intermetallic phase had played important role in strengthening the alloy thermally treated at 200°C for 90 minutes.


2009 ◽  
Vol 631-632 ◽  
pp. 367-372
Author(s):  
Tatsuya Ohmi ◽  
Manabu Iguchi

The solidification structure and hardness distribution in aluminum alloy duplex pipes produced by a two-step centrifugal casting have been investigated. In this process, two kinds of molten metals, i.e., the first melt and the second melt with a higher liquidus temperature were cast in sequence at a given interval into a rotating mold of a centrifugal caster. An Al-12mass%Si alloy was used for the first melt, and an Al-30mass%Ni or Al-32mass%Si-0.1mass%P alloy was used for the second melt. The second melt was cast after the solidified shell of the first melt had formed. The resultant cast pipes consisted of an outer side layer and a composite layer containing fine primary crystals. The outer side layer was a portion of the solidified shell of the first melt that survived after the contact with the higher-temperature second melt. The composite layer consisted of one or two layer(s). When the volume of the remelted part of the solidified shell was large, all the second melt mixed into the first melt and the resulted mixed melt formed the composite layer. On the other hand, the composite layer formed only from the second melt when the temperature of the solidified shell was low. In the intermediate case, the composite layer consisted of these two types of the layers.


1995 ◽  
Vol 61 (592) ◽  
pp. 2572-2577
Author(s):  
Hyung-Seop Shin ◽  
Kazumune Katagiri ◽  
Tadashi Sato ◽  
Kaoru Konno ◽  
Yoshitaka Shoji ◽  
...  

2007 ◽  
Vol 452-453 ◽  
pp. 682-687 ◽  
Author(s):  
E. Rincón ◽  
H.F. López ◽  
M.M. Cisneros ◽  
H. Mancha ◽  
M.A. Cisneros

Sign in / Sign up

Export Citation Format

Share Document