scholarly journals Refinement of primary silicon of hypereutectic Al–Si alloys by ultrasonic radiation and its application for die castings

2011 ◽  
Vol 61 (4) ◽  
pp. 149-154 ◽  
Author(s):  
Kazuhiro Oda ◽  
Sergey Komarov ◽  
Yasuo Ishiwata
1987 ◽  
Vol 37 (6) ◽  
pp. 440-445
Author(s):  
Yoshiaki YAMAMOTO ◽  
Yoshio SUGIYAMA ◽  
Motoyuki NAKAMURA ◽  
Shingo TSUBOI ◽  
Kuniaki MIZUNO
Keyword(s):  

Alloy Digest ◽  
1997 ◽  
Vol 46 (11) ◽  

Abstract Lanxide 92-X-2050 is an aluminum-10 Silicon-1 Magnesium-1 Iron alloy with 30 vol.% of silicon carbide particulate. This metal-matrix composite is designed to outperform the unreinforced counterpart. The alloy-matrix composite is available as die castings. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fatigue. It also includes information on casting. Filing Code: AL-343. Producer or source: Lanxide Corporation.


Alloy Digest ◽  
1979 ◽  
Vol 28 (12) ◽  

Abstract Copper Alloy No. 878 is a copper-zinc-silicon alloy for die castings. Among the brass die-casting alloys, it has the highest strength, hardness and wear resistance; however, it is the most difficult to machine. It is used where very high requirements must be met for strength and wear resistance. Its many applications include tools, pump impellers, gears and marine hardware. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-386. Producer or source: Copper alloy producers.


1935 ◽  
Author(s):  
P. R. Kosting
Keyword(s):  

2021 ◽  
Vol 73 ◽  
pp. 105496
Author(s):  
Z. Znak ◽  
O. Zin ◽  
A. Mashtaler ◽  
S. Korniy ◽  
Yu. Sukhatskiy ◽  
...  
Keyword(s):  

China Foundry ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 37-44
Author(s):  
Benson Kihono Njuguna ◽  
Jia-yan Li ◽  
Yi Tan ◽  
Qian-qian Sun ◽  
Peng-ting Li

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 528
Author(s):  
Chunyue Yin ◽  
Zhehao Lu ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

The objective of the study is to investigate the corresponding microstructure and mechanical properties, especially bending strength, of the hypereutectic Al-Si alloy processed by selective laser melting (SLM). Almost dense Al-22Si-0.2Fe-0.1Cu-Re alloy is fabricated from a novel type of powder materials with optimized processing parameters. Phase analysis of such Al-22Si-0.2Fe-0.1Cu-Re alloy shows that the solubility of Si in Al matrix increases significantly. The fine microstructure can be observed, divided into three zones: fine zones, coarse zones, and heat-affected zones (HAZs). Fine zones are directly generated from the liquid phase with the characteristic of petaloid structures and bulk Al-Si eutectic. Due to the fine microstructure induced by the rapid cooling rate of SLM, the primary silicon presents a minimum average size of ~0.5 μm in fine zones, significantly smaller than that in the conventional produced hypereutectic samples. Moreover, the maximum value of Vickers hardness reaches ~170 HV0.2, and bending strength increases to 687.70 MPa for the as-built Al-22Si-0.2Fe-0.1Cu-Re alloys parts, which is much higher than that of cast counterparts. The formation mechanism of this fine microstructure and the enhancement reasons of bending strength are also discussed.


Author(s):  
Giulia Scampone ◽  
Raul Pirovano ◽  
Stefano Mascetti ◽  
Giulio Timelli

AbstractThis research aimed to study the formation and distribution of oxide-related defects in the gravity die casting process of an AlSi7Cu0.5Mg alloy by using experimental and numerical investigations. Metallographic and image analysis techniques were conducted to map the distribution of oxide inclusions inside the casting at the microscopic level. Numerical simulations were used to analyse the filling and solidification stages, and to foresee the turbulence of the melt and the formation of the oxide defects. The results show that most of the defects were correlated with the oxide layers or bubbles entrained inside the liquid metal. The accuracy of the numerical code in simulating the metal fluid-dynamic behaviour and the heat transfer was verified, and the results were in agreement with the experimental findings. The numerical distribution of defects was consistent with the experimental results, proving that the model successfully predicted the formation of oxide-related defects.


Sign in / Sign up

Export Citation Format

Share Document