scholarly journals Effect of processing parameters of multipass friction stir processing on microstructure and hardness of 7075 aluminum alloy

2013 ◽  
Vol 63 (1) ◽  
pp. 2-7
Author(s):  
Yutaka Matsuda ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi
2011 ◽  
Vol 409 ◽  
pp. 281-286
Author(s):  
Yutaka Matsuda ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi

Friction stir processing (FSP) is a method for controlling the microstructure that has been proposed by applying friction stir welding, FSW. In this study, microstructure and mechanical properties of a 7075 aluminum alloy subjected to multi-pass FSP, MP-FSP, are assessed to obtain fundamental knowledge for improving the plasticity of aluminum alloys. The MP-FSP has been applied to 7075 alloy plates with T6 and O tempers, and microstructural characterization has been made by means of optical and scanning electron microscopies together with EDX and EBSD analyses, while mechanical properties were measured by means of micro hardness and tensile tests at room and high temperatures. From microstructural observation, a new zone, PBZ, has been discovered between stir zones, SZs. The PBZ is composed of two types of (fine and coarse) grains, where the coarse grain contains many sub-grains. Hardness in PBZ is intermediate between that in BM and SZ both in T6 and O specimens; hardness generally decreases and increases in T6 and O specimens, respectively, by MP-FSP. In accord to the hardness change, strength at room temperature is decreased by MP-FSP in T6 specimen, and increased in O specimen. Elongation at 773K is increased both in T6 and O specimens because of superplastic deformation. However, local elongation is smaller in PBZ than in SZ, which can be attributed to the microstructural change by the deformation: grain shape remains equiaxed in SZ while it becomes elongated in the tensile direction in PBZ.


2009 ◽  
Vol 2009 (0) ◽  
pp. 61-62
Author(s):  
Yutaka MATSUDA ◽  
Yoshinobu MOTOHASHI ◽  
Takaaki SAKUMA ◽  
Seunghwan PARK ◽  
Satoshi HIRANO ◽  
...  

2011 ◽  
Vol 702-703 ◽  
pp. 348-351
Author(s):  
Shivanna Pradeep ◽  
Sumit Kumar Sharma ◽  
Vivek Pancholi

In the present work, 5086 Al alloy is subjected to single and multi pass friction stir processing (FSP) to modify microstructure and mechanical anisotropy. The processing is carried out at constant rotation speed of 1025 rpm and different traverse speeds of 30 mm/min and 50 mm/min with and without cooling. Mechanical anisotropy is evaluated in terms of normal and planar anisotropy by performing tensile test in 0, 45 and 90o direction to processing direction. Material processed using multi pass FSP at 30 mm/min is showing lower planar anisotropy as compared to base material. The mechanical anisotropy property is correlated with the development of micro texture.


2017 ◽  
Vol 5 (1) ◽  
pp. 2061-2065 ◽  
Author(s):  
Essam Moustafa ◽  
◽  
Samah Mohammed ◽  
Sayed Abdel-Wanis ◽  
Tamer Mahmoud ◽  
...  

2012 ◽  
Vol 735 ◽  
pp. 316-321 ◽  
Author(s):  
Yutaka Matsuda ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi

Friction stir processing (FSP) causes fine-equiaxed microstructure[1]. In this study, microstructure and mechanical properties of a 7075 aluminum alloy subjected to multipass FSP, MP-FSP, are assessed. A new zone, PBZ, has been discovered between stir zones, SZs. The SZs are composed of fine-equiaxed grains, while PBZs are composed of two types of (fine-equiaxed and coarse-elongated) grains, both of which are still finer than those of base metal. Elongation at 773K of MP-FSPed specimen becomes larger than that of base metal, based on superplastic deformation due to the finer microstructure. Local elongation is smaller in PBZ than in SZ.


2019 ◽  
Vol 12 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Muna K. Abbassa ◽  
Noor Alhuda B. Sharhan

This work is devoted toward optimization of the parameters of the friction stir processing (FSP) which effect on tensile strength of aluminium alloy AA6061-T6 of 6mm thick plate by applying a certain number of tests utilizing the Taguchi method. Design of experiment (DOE) has been applied for the determination of the most important parameters influencing ultimate tensile strength. FSP was achieved under three different rotation speeds (800,1000 and 1250) rpm, different transverse speeds (16,25 and 32) mm\min, and number passes(1,2 and 3)  in the same direction and tool tilt angle was 2°  with using threaded cylindrical pin profile.  The best FSP parameters were 1250 rpm and 32 mm\min and two passes. It was found that the higher hardness value was 75HV in stir zone center and then decreases toward the TMAZ, HAZ and the base metal


Sign in / Sign up

Export Citation Format

Share Document