scholarly journals New Concept on Ductility Exhaustion Considering Creep-Fatigue Failure Mechanism of Type 304SS.

1995 ◽  
Vol 44 (496) ◽  
pp. 29-34 ◽  
Author(s):  
Yusaku WADA ◽  
Kazumi AOTO ◽  
Fumiyoshi UENO
2021 ◽  
Vol 146 ◽  
pp. 106161
Author(s):  
Can Guo ◽  
Dunji Yu ◽  
Xingyue Sun ◽  
Weiwei Yu ◽  
Xu Chen

Author(s):  
Nak-Kyun Cho ◽  
Youngjae Choi ◽  
Haofeng Chen

Abstract Supercritical boiler system has been widely used to increase efficiency of electricity generation in power plant industries. However, the supercritical operating condition can seriously affect structural integrity of power plant components due to high temperature that causes degradation of material properties. Pressure reducing valve is an important component being employed within a main steam line of the supercritical boiler, which occasionally thermal-fatigue failure being reported. This research has investigated creep-cyclic plastic behaviour of the pressure reducing valve under combined thermo-mechanical loading using a numerical direct method known as extended Direct Steady Cyclic Analysis of the Linear Matching Method Framework (LMM eDSCA). Finite element model of the pressure-reducing valve is created based on a practical valve dimension and temperature-dependent material properties are applied for the numerical analysis. The simulation results demonstrate a critical loading component that attributes creep-fatigue failure of the valve. Parametric studies confirm the effects of magnitude of the critical loading component on creep deformation and total deformation per loading cycle. With these comprehensive numerical results, this research provides engineer with an insight into the failure mechanism of the pressure-reducing valve at high temperature.


2000 ◽  
Author(s):  
Hongyin Mao ◽  
Sankaran Mahadevan

2016 ◽  
Vol 665 ◽  
pp. 17-25 ◽  
Author(s):  
Di Song ◽  
Guozheng Kang ◽  
Qianhua Kan ◽  
Chao Yu ◽  
Chuanzeng Zhang

2011 ◽  
Vol 127 ◽  
pp. 344-349
Author(s):  
Zhi Hui Hu ◽  
Ji Quan Hu

Fatigue failure behaviors caused by wire ropes bending-over-sheaves are discussed in the paper. Stress conditions of wire ropes bending-over-sheaves and the mechanism of damage to wire rope caused by fleet angel and angle of wrap is analyzed, the fatigue failure mechanism of wire ropes is investigated in the paper. The investigation indicates that the load and the mechanical damage of ropes bending-over-sheaves is very complex, and the fatigue failure of ropes bending-over-sheaves is the result of combined action of bending fatigue and various kinds of damage. The research will have implications to design and use of wire rope.


2013 ◽  
Vol 66 (1) ◽  
Author(s):  
M. Mohammad ◽  
S. Abdullah ◽  
N. Jamaludin ◽  
O. Innayatullah

This study was carried out to investigate the relationship between the strain and acoustic emission (AE) signals, thus, to confirm the capability of AE technique to monitor the fatigue failure mechanism of a steel component. To achieve this goal, strain and AE signals were captured on the steel specimen during the cyclic fatigue test.  Both signals were collected using specific data acquisition system by attaching the strain gauge and AE piezoelectric transducer simultaneously at the specimen during the test. The stress loading used for the test was set at 600 MPa, and the specimens were fabricated using the SAE 1045 carbon steel.  The related parameters for both signals were determined at every 2000 seconds until the specimen failed.  It was found that a meaningful correlation of all parameters, i.e. amplitude, kurtosis and energy, was established. Finally, all AE parameters are correlated with the damage values, which have been estimated using the Coffin-Manson model.  Hence, it was suggested that the AE technique can be used as a monitoring tool for fatigue failure mechanism in a steel component.


Sign in / Sign up

Export Citation Format

Share Document