scholarly journals Inverse Analysis Procedure for Identifying Material Parameters of Hypoplastic Constitutive Model for Soils

2000 ◽  
Vol 49 (9Appendix) ◽  
pp. 212-220 ◽  
Author(s):  
Piotr DZIADZIUSZKO ◽  
Yasuaki ICHIKAWA ◽  
Zbigniew SIKORA
2007 ◽  
Vol 340-341 ◽  
pp. 1231-1236
Author(s):  
Shou Ju Li ◽  
Ying Xi Liu ◽  
Hai Yun Cao ◽  
Dong Cheng

A tangent modulus of soil mass which allows for a piece-wise linear approximation of the hyperbolic response curve is particularly suited for incremental construction simulation. The parameter identification of nonlinear constitutive model of soil mass is based on an inverse analysis procedure, which consists of minimizing the objective function representing the difference between the experimental data and the calculated data of the mechanical model. The artificial neural network is applied to estimate the model parameters of soil mass. The weights of neural network are trained by using the Levenberg-Marquardt approximation which has a fast convergent ability. The parameter identification results illustrate that the proposed neural network has not only higher computing efficiency but also better identification accuracy. The numerically computational results with finite element method show that the forecasted displacements at observing points according to identified model parameters can precisely agree with the observed displacements.


Author(s):  
Fulufhelo Nemavhola

AbstractRegional mechanics of the heart is vital in the development of accurate computational models for the pursuit of relevant therapies. Challenges related to heart dysfunctioning are the most important sources of mortality in the world. For example, myocardial infarction (MI) is the foremost killer in sub-Saharan African countries. Mechanical characterisation plays an important role in achieving accurate material behaviour. Material behaviour and constitutive modelling are essential for accurate development of computational models. The biaxial test data was utilised to generated Fung constitutive model material parameters of specific region of the pig myocardium. Also, Choi-Vito constitutive model material parameters were also determined in various myocardia regions. In most cases previously, the mechanical properties of the heart myocardium were assumed to be homogeneous. Most of the computational models developed have assumed that the all three heart regions exhibit similar mechanical properties. Hence, the main objective of this paper is to determine the mechanical material properties of healthy porcine myocardium in three regions, namely left ventricle (LV), mid-wall/interventricular septum (MDW) and right ventricle (RV). The biomechanical properties of the pig heart RV, LV and MDW were characterised using biaxial testing. The biaxial tests show the pig heart myocardium behaves non-linearly, heterogeneously and anisotropically. In this study, it was shown that RV, LV and MDW may exhibit slightly different mechanical properties. Material parameters of two selected constitutive models here may be helpful in regional tissue mechanics, especially for the understanding of various heart diseases and development of new therapies.


2021 ◽  
Vol 11 (11) ◽  
pp. 5283
Author(s):  
Jui-Ching Chou ◽  
Hsueh-Tusng Yang ◽  
Der-Guey Lin

Soil-liquefaction-related hazards can damage structures or lead to an extensive loss of life and property. Therefore, the stability and safety of structures against soil liquefaction are essential for evaluation in earthquake design. In practice, the simplified liquefaction analysis procedure associated with numerical simulation analysis is the most used approach for evaluating the behavior of structures or the effectiveness of mitigation plans. First, the occurrence of soil liquefaction is evaluated using the simplified procedure. If soil liquefaction occurs, the resulting structural damage or the following mitigation plan is evaluated using the numerical simulation analysis. Rational and comparable evaluation results between the simplified liquefaction analysis procedure and the numerical simulation analysis are achieved by ensuring that the liquefaction constitutive model used in the numerical simulation has a consistent liquefaction resistance with the simplified liquefaction analysis procedure. In this study, two frequently used liquefaction constitutive models (Finn model and UBCSAND model) were calibrated by fitting the liquefaction triggering curves of most used simplified liquefaction analysis procedures (NCEER, HBF, JRA96, and T-Y procedures) in Taiwan via FLAC program. In addition, the responses of two calibrated models were compared and discussed to provide guidelines for selecting an appropriate liquefaction constitutive model in future projects.


Author(s):  
Salim Meziani ◽  
Lynda Djimli

The first objective of this paper investigates the influence of the previous strain history on ratcheting of the 304 L stainless steel on ambient temperature. The identification is done using the Chaboche constitutive model. New tests were performed where different strain-controlled histories have been applied prior to ratcheting tests. It is demonstrated that under the same conditions, one can observe ratcheting, plastic shakedown or elasticity according to the prior strain-controlled history. The second objective points out the correlation between the experimental data base devoted to the identification of the material parameters and the quality of the predictions in cyclic plasticity. The results suggest that the choice of the tests should be closely linked to the capabilities of the model. In particular, the presence of non proportional strain-controlled tests in the data base may be not a good choice if the model itself is not able to represent explicitly such a character.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3853
Author(s):  
Bilen Emek Abali ◽  
Michele Zecchini ◽  
Gilda Daissè ◽  
Ivana Czabany ◽  
Wolfgang Gindl-Altmutter ◽  
...  

Thermosetting polymers are used in building materials, for example adhesives in fastening systems. They harden in environmental conditions with a daily temperature depending on the season and location. This curing process takes hours or even days effected by the relatively low ambient temperature necessary for a fast and complete curing. As material properties depend on the degree of cure, its accurate estimation is of paramount interest and the main objective in this work. Thus, we develop an approach for modeling the curing process for epoxy based thermosetting polymers. Specifically, we perform experiments and demonstrate an inverse analysis for determining parameters in the curing model. By using calorimetry measurements and implementing an inverse analysis algorithm by using open-source packages, we obtain 10 material parameters describing the curing process. We present the methodology for two commercial, epoxy based products, where a statistical analysis provides independence of material parameters leading to the conclusion that the material equation is adequately describing the material response.


2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2020 ◽  
Vol 2 (4) ◽  
pp. 11-33
Author(s):  
Anna Pandolfi ◽  
Andrea Montanino

Purpose: The geometries used to conduct numerical simulations of the biomechanics of the human cornea are reconstructed from images of the physiological configuration of the system, which is not in a stress-free state because of the interaction with the surrounding tissues. If the goal of the simulation is a realistic estimation of the mechanical engagement of the system, it is mandatory to obtain a stress-free configuration to which the external actions can be applied. Methods: Starting from a unique physiological image, the search of the stress-free configuration must be based on methods of inverse analysis. Inverse analysis assumes the knowledge of one or more geometrical configurations and, chosen a material model, obtains the optimal values of the material parameters that provide the numerical configurations closest to the physiological images. Given the multiplicity of available material models, the solution is not unique. Results: Three exemplary material models are used in this study to demonstrate that the obtained, non-unique, stress-free configuration is indeed strongly dependent on both material model and on material parameters. Conclusion: The likeliness of recovering the actual stress-free configuration of the human cornea can be improved by using and comparing two or more imaged configurations of the same cornea.


Sign in / Sign up

Export Citation Format

Share Document