scholarly journals Dynamic Effect on Impact Tensile Fracture Behavior of PMMA Resin

2008 ◽  
Vol 57 (4) ◽  
pp. 374-379 ◽  
Author(s):  
Kazuo ARAKAWA ◽  
Masaru KATO ◽  
Toshio MADA ◽  
Mitsugu TODO
Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Kuan Gao ◽  
Xin Zhang ◽  
Baoxi Liu ◽  
Jining He ◽  
Jianhang Feng ◽  
...  

Multilayer metal composites have great application prospects in automobiles, ships, aircraft and other manufacturing industries, which reveal their superior strength, toughness, ductility, fatigue lifetime, superplasticity and formability. This paper presents the various mechanical properties, deformation characteristics and strengthening–toughening mechanisms of laminated metal matrix composites during the loading and deformation process, and that super-high mechanical properties can be obtained by adjusting the fabrication process and structure parameters. In the macroscale, the interface bonding status and layer thickness can effectively affect the fracture, impact toughness and tensile fracture elongation of laminated metal matrix composites, and the ductility and toughness cannot be fitting to the rule of mixture (ROM). However, the elastic properties, yield strength and ultimate strength basically follow the rule of mixture. In the microscale, the mechanical properties, deformation characteristics, fracture behavior and toughening mechanisms of laminated composites reveal the obvious size effect.


2018 ◽  
Vol 188 ◽  
pp. 02017
Author(s):  
Fulya Kahrıman ◽  
Muzaffer Zeren

In this study, the chemical composition of Al-0.8Mg-0.8Si alloys was modified with the addition of 0.1 and 0.2 wt.-% Zr. The billets were manufactured by direct chill casting method, homogenized at 560 °C for 6h and then extruded in order to obtain profiles having hollow and circular sections. Recrystallization layer (shell) became narrower due to the addition of Zr. This was attributed to the formation of very fine precipitates (Al3Zr) within the matrix. The mechanical properties showed that both yield and tensile strengths increased as a function of Zr content. Tensile fracture surfaces were examined by scanning electron microscope and the fractographs reflected the effect of grain structure on the fracture behavior of studied alloys. All fracture surfaces indicated typical dimple ruptures, however, the size of dimples were observed as finer structures as a function of Zr content. As seen in cross-sectional graphs, as the Zr content increased the grain structure was refined due to Al3Zr precipitates. These fine precipitates caused the formation of fine and shallow dimples under loading.


2006 ◽  
Vol 25 (5) ◽  
pp. 628-634 ◽  
Author(s):  
Kazuo Arakawa ◽  
Toshio Mada ◽  
Sang-Dae Park ◽  
Mitsugu Todo

1986 ◽  
Vol 81 ◽  
Author(s):  
C. T. Liu

AbstractThis paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni3AI alloys tested at ambient and elevated temperatures. Polycrystalline Ni3Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni3 Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni3Al with <24.5 at. % Al.The tensile ductility of Ni3Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength.


2013 ◽  
Vol 742 ◽  
pp. 170-174
Author(s):  
Ling Zhang ◽  
De Chun Luo ◽  
Xiang Bin Yi

The Cu50Zr42Al8dumbbell-shaped alloy with original scale distance of 25 mm and diameters of 4.5 mm was prepared by the suspend melting-copper mould suction casting. The structure tensile performance testing and the fracture morphology observation of Cu50Zr42Al8BMG as-quenched and 400k/1h isothermal annealing were investigated, respectively. The deformation and fracture behavior of samples had been studied. The results showed that the structure of all samples were composed of amorphous phase and possess good glass formation abilitysample as-quenched is always in the elastic deformation stage during elongation and the tensile strength is 629MPa; however ,for specimen after 400k/1h isothermal annealing ,the yield phenomenon occurs before breaking and the maximum tensile strength is 755Mpa, and the same time, the maximum failure extensibility increases from 0.56% for sample as-quenched to 0.80% for 400k/1h isothermal annealing. The fracture pattern of test sample at annealing assumes venation pattern, which is similar to fractography of Cu50Zr42Al8BMG as-quenched, in addition, which appeared apparent viscous flow behavior and melting characteristics.


1998 ◽  
Vol 68 (9) ◽  
pp. 654-662 ◽  
Author(s):  
Rangaswamy Rajamanickam ◽  
Steven M. Hansen ◽  
Sundaresan Jayaraman

Sign in / Sign up

Export Citation Format

Share Document