scholarly journals Role of nitric oxide synthase on brain GABA transaminase activity and GABA levels

2018 ◽  
Vol 68 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Lourdes A. Vega Rasgado ◽  
Guillermo Ceballos Reyes ◽  
Fernando Vega Díaz

Abstract In an attempt to clarify the controversial role of nitric oxide (NO) in seizures, the effects of NO on brain GABA transaminase (GABA-T) activity and GABA levels were investigated. To this aim, the effects of the substrate (l-arginine) and inhibitors (Nω-nitro-l-arginine methyl ester, 7-nitroindazole) of NO synthase (NOS) on GABA-T activity and GABA levels in vitro and ex vivo were analyzed. In vitro NO diminished GABA-T activity and increased GABA. Ex vivo NO modified GABA-T activity and GABA levels biphasically. Inhibition of endothelial and neuronal NOS (eNOS and nNOS) had opposite effects on GABA-T activity and GABA levels, even during seizures induced by pentylenetetrazole. Different effects of NO on GABA-T activity and on GABA levels, depending on the NOS isoform involved, may explain its contradictory role in seizures, the endothelial NOS acting as an anticonvulsant and the neuronal NOS as a proconvulsant. nNOS inhibitors may represent a new generation of antiepileptics.

2004 ◽  
Vol 78 (3) ◽  
pp. 1564-1574 ◽  
Author(s):  
Matthew D. Koci ◽  
Laura A. Kelley ◽  
Diane Larsen ◽  
Stacey Schultz-Cherry

ABSTRACT Astrovirus is one of the major causes of infant and childhood diarrhea worldwide. Our understanding of astrovirus pathogenesis trails behind our knowledge of its molecular and epidemiologic properties. Using a recently developed small-animal model, we investigated the mechanisms by which astrovirus induces diarrhea and the role of both the adaptive and innate immune responses to turkey astrovirus type-2 (TAstV-2) infection. Astrovirus-infected animals were analyzed for changes in total lymphocyte populations, alterations in CD4+/CD8+ ratios, production of virus-specific antibodies (Abs), and macrophage activation. There were no changes in the numbers of circulating or splenic lymphocytes or in CD4+/CD8+ ratios compared to controls. Additionally, there was only a modest production of virus-specific Abs. However, adherent spleen cells from infected animals produced more nitric oxide (NO) in response to ex vivo stimulation with lipopolysaccharide. In vitro analysis demonstrated that TAstV-2 induced macrophage production of inducible nitric oxide synthase. Studies using NO donors and inhibitors in vivo demonstrated, for the first time, that NO inhibited astrovirus replication. These studies suggest that NO is important in limiting astrovirus replication and are the first, to our knowledge, to describe the potential role of innate immunity in astrovirus infection.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chia-Ling Chen ◽  
Chiou-Feng Lin ◽  
Shiou-Ling Lu ◽  
Miao-Huei Cheng ◽  
...  

Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β(GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3βin GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3βoccurred after GAS infection, and inhibition of GSK-3βreduced iNOS expression and NO production. Furthermore, GSK-3βinhibitors reduced NF-κB activation and subsequent TNF-αproduction, which indicates that GSK-3βacts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3βinhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-αand improved the survival rate. The inhibition of GSK-3βto moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.


2005 ◽  
Vol 17 (2) ◽  
pp. 204
Author(s):  
A.K. Kadanga ◽  
D. Tesfaye ◽  
S. Ponsuksili ◽  
K. Wimmers ◽  
M. Gilles ◽  
...  

Nitric oxide (NO) is a free radical that serves as a key-signal molecule in various physiological processes including reproduction. Four isoforms of nitric oxide synthase (NOS) have been characterized: endothelial (eNOS), inducible (iNOS), neuronal (nNOS), and mitochondrial (mtNOS). The first two isoforms are reported to be expressed in mouse follicles, oocytes, and pre-implantation embryos (Nishikimi A et al. 2001 Reproduction 122, 957–963). However, the role of any of these isoforms have not yet been investigated in bovine embryos. Here we aimed to examine the role of NOS in in vitro development of bovine embryos by treating embryos with NOS inhibitor, N-omega-L-nitro-arginine methyl esther (L-NAME), and examining the localization of the protein in pre-implantation embryos. Oocytes and embryos were grown in the media with NOS inhibitor added at a level of 0 mM (control), 1 mM, and 10 mM to either maturation or culture medium. Each experiment was conducted in four replicates each containing 100 oocytes for IVP. Cleavage and blastocyst rate were recorded at Days 2 and 7, respectively. Data were analyzed using the General Linear Model in SAS version 8.02 (SAS Institute, Inc., Cary, NC, USA) with the main factors being the level of L-NAME and the point of application. Pairwise comparisons were done using the Tukey test. Protein localization in bovine oocytes and embryos was performed by immunocytochemistry using eNOS- and iNOS-specific antibodies. Embryos were fixed in 3.7% paraformaldehyde, permeabilized in 0.1% Triton-X100, and washed three times in PBS supplemented with BSA. They were incubated with eNOS and iNOS primary antibody (1:200 dilutions) and washed before incubation with secondary antibody conjugated to FITC. After washing they were mounted on glass slides and examined under a confocal laser scanning microscope (Carl Zeiss Jena, Carl Zeiss AG, Oberkochen, Germany). In the controls the primary antibodies were omitted. As shown in the table below, the presence of L-NAME in the maturation medium significantly reduced the cleavage and blastocyst rate independent of the dosage applied. However the presence of L-NAME in the culture medium had an influence only on the blastocyst rate. The immunocytochemical staining results showed that both eNOS and iNOS are expressed in the cytoplasm of the MII oocytes, and during the pre-implantation stage the fluorescence signal was observed in nuclei and cytoplasm. However, the nuclear signal was much weaker. In conclusion, the present study is the first to determine the role of NO and to detect NOS protein in bovine oocytes and pre-implantation embryos. These results indicate that nitric oxide may play an important role as diffusible regulator of bovine oocyte maturation and preimplantation embryo development. Table 1. Effect of l-name addition in maturation or culture medium on embryo development


2013 ◽  
Vol 6 (4) ◽  
pp. 442-446 ◽  
Author(s):  
Jigarkumar R. Patel ◽  
Bharat Z. Dholakiya ◽  
Nibha Mishra

1999 ◽  
Vol 160 (2) ◽  
pp. 275-283 ◽  
Author(s):  
A Gobbetti ◽  
C Boiti ◽  
C Canali ◽  
M Zerani

We examined the presence and the regulation of nitric oxide (NO) synthase (NOS) using in vitro cultured corpora lutea (CL) obtained from rabbits at days 4 and 9 of pseudopregnancy. The role of NO and NOS on steroidogenesis was also investigated using the same CL preparations after short-term incubations (30 min and 2 h) with the NO donor, sodium nitroprusside (NP), the NOS inhibitor, Nomega-nitro-l-arginine methyl ester (l-NAME) and prostaglandin (PG) F-2alpha. The basal NOS activity was greater in CL at day 4 than at day 9, and was also differently modulated by PGF-2alpha, depending on the age of the CL. The addition of PGF-2alpha to day 4 CL had no effect, but PGF-2alpha on day 9 caused a threefold increase in NOS activity. NP caused a two- to fivefold decrease in release of progesterone from CL of both ages, and this inhibitory effect on steroidogenesis was reversed by l-NAME. All treatments failed to modify basal androgens and 17beta-oestradiol was not detectable in either control or treated CL. These results suggest that NO is effectively involved in the regulation process of steroidogenesis, independently of 17beta-oestradiol. PGF-2alpha had no effect on day 4, but induced luteolysis on day 9, by reducing progesterone (P</=0. 01) to about 18% of control. The luteolytic action of PGF-2alpha was completely reversed by co-incubation with l-NAME, thus supporting the hypothesis that luteolysis is mediated by NO. The addition of NP or l-NAME did not modify the in vitro release of PGF-2alpha. We hypothesised that PGF-2alpha upregulates NOS activity and, consequently, the production of NO, which acutely inhibits progesterone release from day 9 CL of pseudopregnant rabbits.


2000 ◽  
Vol 100 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Michael J. HICKEY

Constitutively produced nitric oxide released by endothelial cells has been shown to act as an endogenous agent which inhibits the rolling and adhesion of leucocytes in the microcirculation. However, during various types of inflammation, expression of the inducible form of nitric oxide synthase (iNOS) can dramatically increase the amount of nitric oxide present in tissues. Furthermore, as iNOS can be expressed by a wide variety of cell types, the distribution of nitric oxide is likely to be altered relative to that in unstimulated tissue. Under these conditions, it is less well understood whether iNOS-derived nitric oxide retains the anti-adhesive capabilities of constitutively produced nitric oxide. This review summarizes work done to examine this issue. Three main approaches have been used. In vitro studies have examined the role of iNOS in adhesive interactions between stimulated endothelial cells and leucocytes, providing evidence of an anti-adhesive effect of iNOS. In addition, the role of iNOS has been examined in vivo in animal models of inflammation using pharmacological iNOS inhibitors. These experiments were extended by the advent of the iNOS-deficient (iNOS-/-) mouse. Intravital microscopy studies of these mice have indicated that, under conditions of low-dose endotoxaemia, iNOS-derived nitric oxide can inhibit leucocyte rolling and adhesion. The potential mechanisms for these effects are discussed. In contrast, several other studies have observed either no effect or an enhancing effect of iNOS on inflammatory leucocyte recruitment. Taken together, these studies suggest that the importance of iNOS in modulating leucocyte recruitment can vary according to the type of inflammatory response.


1999 ◽  
Vol 163 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B Akesson ◽  
R Henningsson ◽  
A Salehi ◽  
I Lundquist

We have studied, by a combined in vitro and in vivo approach, the relation between the inhibitory action of N(G)-nitro-l-arginine methyl ester (L-NAME), a selective inhibitor of nitric oxide synthase (NOS), on the activity of islet constitutive NOS (cNOS) and glucose regulation of islet hormone release in mice. The cNOS activity in islets incubated in vitro at 20 mM glucose was not appreciably affected by 0.05 or 0.5 mM L-NAME, but was greatly suppressed (-60%) by 5 mM L-NAME. Similarly, glucose-stimulated insulin release was unaffected by the lower concentrations of L-NAME but greatly enhanced in the presence of 5 mM of the NOS inhibitor. In incubated islets inhibition of cNOS activity resulted in a modestly enhanced insulin release in the absence of glucose, did not display any effect at physiological or subphysiological glucose concentrations, but resulted in a markedly potentiated insulin release at hyperglycaemic glucose concentrations. In the absence of glucose, glucagon secretion was suppressed by L-NAME. The dynamics of glucose-induced insulin release and (45)Ca(2+) efflux from perifused islets revealed that L-NAME caused an immediate potentiation of insulin release, and a slight increase in (45)Ca(2+) efflux. In islets depolarized with 30 mM K(+) in the presence of the K(+)(ATP) channel opener, diazoxide, L-NAME still greatly potentiated glucose-induced insulin release. Finally, an i.v. injection of glucose to mice pretreated with L-NAME was followed by a markedly potentiated insulin response, and an improved glucose tolerance. In accordance, islets isolated directly ex vivo after L-NAME injection displayed a markedly reduced cNOS activity. In conclusion, we have shown here, for the first time, that biochemically verified suppression of islet cNOS activity, induced by the NOS inhibitor L-NAME, is accompanied by a marked potentiation of glucose-stimulated insulin release both in vitro and in vivo. The major action of NO to inhibit glucose-induced insulin release is probably not primarily linked to changes in Ca(2+) fluxes and is exerted mainly independently of membrane depolarization events.


2002 ◽  
Vol 70 (2) ◽  
pp. 679-684 ◽  
Author(s):  
C. Canthaboo ◽  
D. Xing ◽  
X. Q. Wei ◽  
M. J. Corbel

ABSTRACT The mechanism whereby whole-cell pertussis vaccines (WCV) confer protection against Bordetella pertussis is still not fully understood. We have previously reported that macrophage activation produced by vaccination with WCV is associated with induction of NO synthesis by macrophages in response to in vitro stimulation with B. pertussis antigens. To determine whether NO production is an effector of protection or simply a marker of activation, the susceptibility of inducible nitric oxide synthase (type II, iNOS) knockout mice to infection with B. pertussis was examined. We showed that iNOS knockout mice were more susceptible to B. pertussis respiratory challenge than wild-type mice. iNOS-deficient mice also developed a less effective protective response than wild-type mice after the same immunization with WCV. This suggests that NO plays an important role in effecting protection against B. pertussis challenge.


Sign in / Sign up

Export Citation Format

Share Document