scholarly journals Evaluation of COVID-19 protease and HIV inhibitors interactions

2021 ◽  
Vol 72 (1) ◽  
pp. 1-8
Author(s):  
Linh Tran ◽  
Dao Ngoc Hien Tam ◽  
Heba Elhadad ◽  
Nguyen Minh Hien ◽  
Nguyen Tien Huy

Abstract The epidemic of the novel coronavirus disease (COVID-19) that started in 2019 has evoked an urgent demand for finding new potential therapeutic agents. In this study, we performed a molecular docking of anti-HIV drugs to refine HIV protease inhibitors and nucleotide analogues to target COVID-19. The evaluation was based on docking scores calculated by AutoDock Vina and top binding poses were analyzed. Our results suggested that lopinavir, darunavir, atazanavir, remdesivir, and tipranavir have the best binding affinity for the 3-chymotrypsin-like protease of COVID-19. The comparison of the binding sites of three drugs, namely, darunavir, atazanavir and remdesivir, showed an overlap region of the protein pocket. Our study showed a strong affinity between lopinavir, darunavir, atazanavir, tipranavir and COVID-19 protease. However, their efficacy should be confirmed by in vitro studies since there are concerns related to interference with their active sites.

Author(s):  
Yu-Chuan Chang ◽  
Yi-An Tung ◽  
Ko-Han Lee ◽  
Ting-Fu Chen ◽  
Yu-Chun Hsiao ◽  
...  

The outbreak of novel coronavirus (COVID-19) infections occurring in 2019 is in dire need of finding potential therapeutic agents. In this study, we used molecular docking strategies to repurpose HIV protease inhibitors and nucleotide analogues for COVID-19. The evaluation was made on docking scores calculated by AutoDock Vina and RosettaCommons. Preliminary results suggested that Indinavir and Remdesivir have the best docking scores and the comparison of the docking sites of these two drugs shows a near perfect dock in the overlap region of the protein pocket. However, the active sites inferred from the proteins of SARS coronavirus are not compatible with the docking site of COVID-19, which may give rise to concern in the efficacy of drugs.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 24-28
Author(s):  
A.A Rege ◽  
◽  
A. S Chowdhary

Aqueous extracts of Ocimum sanctum Linn., Tinospora cordifolia (Willd.) Miers ex Hook. f. & Thoms, Withania somnifera Dunal, Avicennia officinalis Linn. and Rhizophora mucronata Lam. were included for the present in vitro study. Pepsin was used as a substitute for HIV-protease to evaluate inhibitory activity of these extracts, as pepsin has close resemblance with HIV-protease in proteolytic activity. O. sanctum revealed the highest inhibitory activity followed by R. mucronata. In our earlier study, O. sanctum and R. mucronata exerted anti-HIV activity via multiple mechanisms of action; viz., interference with the gp120 / CD4 interaction and inhibition of HIV-reverse transcriptase. In the present study, they also showed potent inhibitory activity against pepsin enzyme (indirectly against HIV-protease) which may be due their flavonoids content.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Nourhan Hisham Shady ◽  
Khayrya A. Youssif ◽  
Ahmed M. Sayed ◽  
Lassaad Belbahri ◽  
Tomasz Oszako ◽  
...  

The acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) caused severe panic all over the world. The coronavirus (COVID-19) outbreak has already brought massive human suffering and major economic disruption and unfortunately, there is no specific treatment for COVID-19 so far. Herbal medicines and purified natural products can provide a rich resource for novel antiviral drugs. Therefore, in this review, we focused on the sterols and triterpenes as potential candidates derived from natural sources with well-reported in vitro efficacy against numerous types of viruses. Moreover, we compiled from these reviewed compounds a library of 162 sterols and triterpenes that was subjected to a computer-aided virtual screening against the active sites of the recently reported SARS-CoV-2 protein targets. Interestingly, the results suggested some compounds as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 41-44
Author(s):  
A. A. Rege ◽  
◽  
A. S Chowdhary

Ethanol (Direct) extracts of mangrove plants, namely, Avicennia officinalis Linn. and Rhizophora mucronata Lam. were included for the present in vitro study. Pepsin was used as a substitute for HIV-protease to evaluate inhibitory activity of these extracts, as pepsin has close resemblance with HIV-protease in proteolytic activity. R. mucronata revealed potent inhibitory activity than A. officinalis with IC50 value of 14.63 µg/mL. In our earlier study, R. mucronata exerted anti-HIV activity via multiple mechanisms of action; viz., interference with the gp120 / CD4 interaction and inhibition of HIV-reverse transcriptase. In the present study, it also showed potent inhibitory activity against pepsin enzyme (indirectly against HIV-protease) which may be due its high flavonoids content.


Author(s):  
Sisir Nandi ◽  
Mohit Kumar ◽  
Mridula Saxena ◽  
Anil Kumar Saxena

Background: The novel coronavirus disease (COVID-19) is caused by a new strain (SARS-CoV-2) erupted in 2019. Nowadays, it is a great threat that claims uncountable lives worldwide. There is no specific chemotherapeutics developed yet to combat COVID-19. Therefore, scientists have been devoted in the quest of the medicine that can cure COVID- 19. Objective: Existing antivirals such as ASC09/ritonavir, lopinavir/ritonavir with or without umifenovir in combination with antimalarial chloroquine or hydroxychloroquine have been repurposed to fight the current coronavirus epidemic. But exact biochemical mechanisms of these drugs towards COVID-19 have not been discovered to date. Method: In-silico molecular docking can predict the mode of binding to sort out the existing chemotherapeutics having a potential affinity towards inhibition of the COVID-19 target. An attempt has been made in the present work to carry out docking analyses of 34 drugs including antivirals and antimalarials to explain explicitly the mode of interactions of these ligands towards the COVID-19protease target. Results: 13 compounds having good binding affinity have been predicted towards protease binding inhibition of COVID-19. Conclusion: Our in silico docking results have been confirmed by current reports from clinical settings through the citation of suitable experimental in vitro data available in the published literature.


Author(s):  
Ekta Shirbhate ◽  
Preeti Patel ◽  
Vijay K Patel ◽  
Ravichandran Veerasamy ◽  
Prabodh C Sharma ◽  
...  

: The novel coronavirus disease-19 (COVID-19), a global pandemic that emerged from Wuhan, China has today travelled all around the world, so far 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 update dated August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine prevails. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID-19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in their clinical experiences or studies against COVID-19 and also focuses on mode of action of drugs being repositioned against COVID-19.


2021 ◽  
Vol 22 (13) ◽  
pp. 6850
Author(s):  
Seyyed Mojtaba Mousavi ◽  
Seyyed Alireza Hashemi ◽  
Sonia Bahrani ◽  
Khadije Yousefi ◽  
Gity Behbudi ◽  
...  

In this review, the unique properties of intrinsically conducting polymer (ICP) in biomedical engineering fields are summarized. Polythiophene and its valuable derivatives are known as potent materials that can broadly be applied in biosensors, DNA, and gene delivery applications. Moreover, this material plays a basic role in curing and promoting anti-HIV drugs. Some of the thiophene’s derivatives were chosen for different experiments and investigations to study their behavior and effects while binding with different materials and establishing new compounds. Many methods were considered for electrode coating and the conversion of thiophene to different monomers to improve their functions and to use them for a new generation of novel medical usages. It is believed that polythiophenes and their derivatives can be used in the future as a substitute for many old-fashioned ways of creating chemical biosensors polymeric materials and also drugs with lower side effects yet having a more effective response. It can be noted that syncing biochemistry with biomedical engineering will lead to a new generation of science, especially one that involves high-efficiency polymers. Therefore, since polythiophene can be customized with many derivatives, some of the novel combinations are covered in this review.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Iwein Gyselinck ◽  
◽  
Laurens Liesenborghs ◽  
Ewout Landeloos ◽  
Ann Belmans ◽  
...  

Abstract Background The rapid emergence and the high disease burden of the novel coronavirus SARS-CoV-2 have created a medical need for readily available drugs that can decrease viral replication or blunt the hyperinflammatory state leading to severe COVID-19 disease. Azithromycin is a macrolide antibiotic, known for its immunomodulatory properties. It has shown antiviral effect specifically against SARS-CoV-2 in vitro and acts on cytokine signaling pathways that have been implicated in COVID-19. Methods DAWn-AZITHRO is a randomized, open-label, phase 2 proof-of-concept, multicenter clinical trial, evaluating the safety and efficacy of azithromycin for treating hospitalized patients with COVID-19. It is part of a series of trials testing promising interventions for COVID-19, running in parallel and grouped under the name DAWn-studies. Patients hospitalized on dedicated COVID wards are eligible for study inclusion when they are symptomatic (i.e., clinical or radiological signs) and have been diagnosed with COVID-19 within the last 72 h through PCR (nasopharyngeal swab or bronchoalveolar lavage) or chest CT scan showing typical features of COVID-19 and without alternate diagnosis. Patients are block-randomized (9 patients) with a 2:1 allocation to receive azithromycin plus standard of care versus standard of care alone. Standard of care is mostly supportive, but may comprise hydroxychloroquine, up to the treating physician’s discretion and depending on local policy and national health regulations. The treatment group receives azithromycin qd 500 mg during the first 5 consecutive days after inclusion. The trial will include 284 patients and recruits from 15 centers across Belgium. The primary outcome is time from admission (day 0) to life discharge or to sustained clinical improvement, defined as an improvement of two points on the WHO 7-category ordinal scale sustained for at least 3 days. Discussion The trial investigates the urgent and still unmet global need for drugs that may impact the disease course of COVID-19. It will either provide support or else justify the discouragement of the current widespread, uncontrolled use of azithromycin in patients with COVID-19. The analogous design of other parallel trials of the DAWN consortium will amplify the chance of identifying successful treatment strategies and allow comparison of treatment effects within an identical clinical context. Trial registration EU Clinical trials register EudraCT Nb 2020-001614-38. Registered on 22 April 2020


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


2008 ◽  
Vol 52 (6) ◽  
pp. 2111-2119 ◽  
Author(s):  
Hirotomo Nakata ◽  
Seth M. Steinberg ◽  
Yasuhiro Koh ◽  
Kenji Maeda ◽  
Yoshikazu Takaoka ◽  
...  

ABSTRACT Aplaviroc (AVC), an experimental CCR5 inhibitor, potently blocks in vitro the infection of R5-tropic human immunodeficiency virus type 1 (R5-HIV-1) at subnanomolar 50% inhibitory concentrations. Although maraviroc is presently clinically available, further studies are required to determine the role of CCR5 inhibitors in combinations with other drugs. Here we determined anti-HIV-1 activity using combinations of AVC with various anti-HIV-1 agents, including four U.S. Food and Drug Administration-approved drugs, two CCR5 inhibitors (TAK779 and SCH-C) and two CXCR4 inhibitors (AMD3100 and TE14011). Combination effects were defined as synergistic or antagonistic when the activity of drug A combined with B was statistically greater or less, respectively, than the additive effects of drugs A and A combined and drugs B and B combined by using the Combo method, described in this paper, which provides (i) a flexible choice of interaction models and (ii) the use of nonparametric statistical methods. Synergistic effects against R5-HIV-1Ba-L and a 50:50 mixture of R5-HIV-1Ba-L and X4-HIV-1ERS104pre (HIV-1Ba-L/104pre) were seen when AVC was combined with zidovudine, nevirapine, indinavir, or enfuvirtide. Mild synergism and additivity were observed when AVC was combined with TAK779 and SCH-C, respectively. We also observed more potent synergism against HIV-1Ba-L/104pre when AVC was combined with AMD3100 or TE14011. The data demonstrate a tendency toward greater synergism with AVC plus either of the two CXCR4 inhibitors compared to the synergism obtained with combinations of AVC and other drugs, suggesting that the development of effective CXCR4 inhibitors may be important for increasing the efficacies of CCR5 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document