scholarly journals The Effect of Spray Distance on Porosity, Surface Roughness and Microhardness of WC-10Co-4Cr Coatings Deposited by HVOF

2021 ◽  
Vol 21 (4) ◽  
pp. 99-111
Author(s):  
Monika Górnik ◽  
Ewa Jonda ◽  
Monika Nowakowska ◽  
Leszek Łatka

Abstract The paper presents the computational studies on the microstructure of WC-Co-Cr coatings deposited by High Velocity Oxy Fuel spraying (HVOF). The study covers the porosity assessment according to ASTM E2109-01 standard, carried out in ImageJ software, in terms of volume porosity, size and shape of the pores. The evaluation was preceded by scanning electron microscope (SEM) observations at magnifications of 2000x and 5000x. Additionally, topography analysis has been performed by confocal laser scanning microscope (CLSM), and the surface roughness Ra was evaluated by the contact method with use of a stylus profilometer. Finally, the influence of porosity was observed for coatings microhardness HV0.3. According to the results, the total closed porosity was found to be in the range of 5.01 vol.% and 5.38 vol.%. The dominated pores in the coatings were of size 0.1-1.0 μm. Studies showed that HVOF process enabled deposition of dense coatings, characterized by homogenous distribution of pores and low roughness.

Author(s):  
Meghan Shilling ◽  
Lipiin Sung ◽  
Thomas R. Kurfess

In many mesoscale parts (> 100μm) with microscale features (100nm to 100μm), the edge can constitute a large percentage of the total feature size. These edges need to be measured and characterized. Unfortunately, very few tools exist that are able to measure a range of angles with a resolution appropriate to these parts. The measurement methods commonly used to characterize mesoscale parts are designed for nominally planar surfaces and fail when used on a surface with moderate slope. Other tools exist which can adequately capture a sloping surface, however they have characteristics which make them less desirable for edge measurement (contact, destructive, image-output). The confocal laser scanning microscope (CLSM) is a non-contact method which has special properties that allow it to measure sloping surfaces of various materials and finishes. This paper will discuss the CLSM and its ability to measure edges of mesoscale parts.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Sign in / Sign up

Export Citation Format

Share Document