microscope analysis
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 10)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 1039 ◽  
pp. 557-564
Author(s):  
Haydar Abdul Hassan Al-Ethari ◽  
Sundus Abbas Jasim ◽  
Ekhlas Khalid Zamel

In this research work, bioactive Ti15Mg alloy was prepared by powder metallurgy route to investigate its biocompatibility and mechanical properties. Many tests were performed including X-ray diffraction; optical microscope analysis, scanning electron microscope analysis, ultrasonic wave test, corrosion behavior test, Static immersion test, and the wet sliding wear test. The XRD result shows that the prepared alloy sample consist of (α-Ti phase) and Mg. The microstructure of the prepared alloy sample consisted of a biodegradable Mg or pore and alpha titanium. The effect of the Mg content on degradability was tested based on simulated body fluid of Ringer solutions using electrochemical corrosion. The findings indicate that an elastic modulus of 47GPa exhibits the alloy. There were low corrosion rates of the alloy. The Ti matrix remained integrity after 14 days of immersion in the Ringer solutions, and the magnesium phase dissolved in the solution, causing a layer to form on the alloy. The wear behavior of the prepared ally at wet sliding conditions was evaluated using pin on disc method. The in vitro analysis showed good biocompatibility with Ti15Mg alloy. The prepared alloy demonstrates good biocompatibility and bioactivity.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 484 ◽  
Author(s):  
Xin Ren ◽  
Wei Li ◽  
Zhongyang Mao ◽  
Min Deng

In this paper, fly ash is used to inhibit the alkali-carbonate reaction (ACR). The experimental results suggest that when the alkali equivalent (equivalent Na2Oeq) of the cement is 1.0%, the adding of 30% fly ash can significantly inhibit the expansion in low-reactivity aggregates. For moderately reactive aggregates, the expansion rate can also be reduced by adding 30% of fly ash. According to a polarizing microscope analysis, the cracks are expansion cracks mainly due to the ACR. The main mechanisms of fly ash inhibiting the ACR are that it refines the pore structure of the cement paste, and that the alkali migration rate in the curing solution to the interior of the concrete microbars is reduced. As the content of fly ash increases, the concentrations of K+ and Na+ and the pH value in the pore solution gradually decrease. This makes the ACR in the rocks slower, such that the cracks are reduced, and the expansion due to the ACR is inhibited.


2020 ◽  
Vol 27 (3) ◽  
pp. 873-881
Author(s):  
Thiago A. Brasil ◽  
Edson H. Watanabe ◽  
Troner Assenheimer ◽  
Lidiane do Carmo ◽  
Marcio Nele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document