scholarly journals Highsilicone Austempered Ductile Iron

2014 ◽  
Vol 14 (1) ◽  
pp. 55-58 ◽  
Author(s):  
A. Kochański ◽  
A. Krzyńska ◽  
T. Radziszewski

Abstract Ductile iron casts with a higher silicone content were produced. The austempering process of high silicone ductile iron involving different austempering times was studied and the results presented. The results of metallographical observations and tensile strength tests were offered. The obtained results point to the fact that the silicone content which is considered as acceptable in the literature may in fact be exceeded. The issue is viewed as requiring further research

2012 ◽  
Vol 457-458 ◽  
pp. 1155-1158
Author(s):  
Bulan Abdullah ◽  
Siti Khadijah Alias ◽  
A. Jaffar ◽  
Abd Amirul Rashid ◽  
M. Haskil ◽  
...  

2012 ◽  
Vol 457-458 ◽  
pp. 1155-1158 ◽  
Author(s):  
Bulan Abdullah ◽  
Siti Khadijah Alias ◽  
A. Jaffar ◽  
Abd Amirul Rashid ◽  
M. Haskil ◽  
...  

This study focused on tensile strength properties inclusive of ultimate tensile strength and elongation values of niobium alloyed ductile iron in as cast and austempered conditions. The tensile specimens were machined according to TS 138 EN 10002-1 standard. Austempering heat treatment was conducted by first undergoing austenitizing process at 900°C before rapidly quenched in salt bath furnace and held at 350°C for 1 hour, 2 hours and 3 hours subsequently. The findings indicated that austempering the samples for 1 hour had resulted in improvement of almost twice of the tensile strength in niobium alloyed ductile iron. Improvement of elongations values were also noted after 1 hour austempering times. Increasing the austempering holding times to 2 hour and 3 hours had resulted in decrement in both tensile strength and elongations values.


2019 ◽  
Vol 13 (1) ◽  
pp. 4356-4367
Author(s):  
Ananda Hegde ◽  
Sathyashankara Sharma ◽  
Ramakrishna Vikas Sadanand

Austempered Ductile Iron (ADI) belongs to the family of cast irons whose mechanical properties are altered using austempering heat treatment process. The objective of this paper is to study the effects of heat treatment parameters on manganese alloyed ADI. Hence, austenitization temperature, austempering temperature and austempering time are taken as the control variables along with the manganese content in the material. The effects of heat treatment are studied by measuring the ultimate tensile strength and the hardness of the material.  The regression equations are developed to relate the various parameters under study. The microstructures of the specimen reveal that retained austenite content increases with increase in manganese and results in decrease in hardness of the material. The statistical analyses indicate that the austempering temperature is the major factor affecting the variation in hardness and tensile strength with 74.5 % of contribution within the range of values whereas,  variation in manganese content does not have significant effect on hardness within the investigated composition range in the material.


Author(s):  
A. A. Gorbatovskiy

The article presents results of strength tests of bismuth telluride prismatic samples obtained by growing crystals. These crystals have semiconductor properties and are used in the heat machines, the run-ability of which largely depends on the strength of crystals. Data available in the literature are significantly different from each other. It has been shown that, the most consistent strength tests results are obtained in case of bend testing. The measurement results of the elasticity modulus and tensile strength are given. For tests, an INSTRON testing machine with maximum direct stress of the 1000 H was used.


2005 ◽  
Vol 47 (9) ◽  
pp. 523-528 ◽  
Author(s):  
Ahmet Sagin ◽  
Ahmet Topuz

2006 ◽  
Vol 47 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Zenjiro Yajima ◽  
Yoichi Kishi ◽  
Ken’ichi Shimizu ◽  
Hideharu Mochizuki ◽  
Toshiki Yoshida

Sign in / Sign up

Export Citation Format

Share Document