scholarly journals Urban honey - the aspects of its safety

2018 ◽  
Vol 69 (3) ◽  
pp. 264-274 ◽  
Author(s):  
Milica S. Jovetić ◽  
Azra S. Redžepović ◽  
Nebojša M. Nedić ◽  
Denis Vojt ◽  
Slađana Z. Đurđić ◽  
...  

AbstractTo contribute to the development of urban beekeeping, we designed this study to obtain more information about the contamination of urban bee products with toxic metals, polycyclic aromatic hydrocarbons (PAHs), and pesticides. The samples of honey (N=23), pollen (N=13), and floral nectar (N=6) were collected from the experimental stationary apiary of the Belgrade University Faculty of Agriculture located in centre of Zemun (a municipality of the Belgrade metropolitan area) in 2015 and 2016. Metals (Pb, Cd, As, Cu, Zn, Fe, Mn, Ni, Cr, and Hg) were determined with inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). Polycyclic aromatic hydrocarbons (PAHs) were analysed with high-performance liquid chromatography with fluorescence detection (HPLC-FLD). Pesticides were analysed with gas chromatography - mass spectrometry (GC-MS). The honey samples were generally within the European and Serbian regulatory limits. The levels of all the 123 analysed pesticides were below the limit of quantification (LOQ). Regarding PAH levels in honey, the highest content was found for naphthalene. The elevated levels of Hg and Cr and of PAHs in the pollen samples indicated air pollution. Pesticide residues in pollen, however, were below the LOQ. In nectar, metal levels were relatively similar to those in honey. Our results suggest that the investigated urban honey meets the regulatory requirements for metals, PAHs, and pesticides and is therefore safe for consumption.

Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 573 ◽  
Author(s):  
Jong-Sun Lee ◽  
Ji-Won Han ◽  
Munyhung Jung ◽  
Kwang-Won Lee ◽  
Myung-Sub Chung

Air frying is commonly used as a substitute for deep-fat frying. However, few studies have examined the effect of air frying on the formation of potential carcinogens in foodstuffs. This study aimed to investigate the formation of acrylamide and four types of polycyclic aromatic hydrocarbons (PAHs) in air-fried and deep-fat-fried chicken breasts, thighs, and wings thawed using different methods, i.e., by using a microwave or a refrigerator, or by water immersion. The acrylamide and PAHs were analyzed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) and gas chromatography–mass spectrometry (GC-MS), respectively. Deep-fat-fried chicken meat had higher acrylamide (n.d.–6.19 μg/kg) and total PAH (2.64–3.17 μg/kg) air-fried chicken meat (n.d.–3.49 μg/kg and 1.96–2.71 μg/kg). However, the thawing method did not significantly affect the formation of either acrylamide or PAHs. No significant differences in the acrylamide contents were observed among the chicken meat parts, however, the highest PAH contents were found in chicken wings. Thus, the results demonstrated that air frying could reduce the formation of acrylamide and PAHs in chicken meat in comparison with deep-fat frying.


Sign in / Sign up

Export Citation Format

Share Document