Efficiency of Using GNSS-PPP for Digital Elevation Model (DEM) Production

2020 ◽  
Vol 55 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Ashraf Abdallah ◽  
Amgad Saifeldin ◽  
Abdelhamid Abomariam ◽  
Reda Ali

AbstractIn the developing countries, cost-effective observation techniques are very important for earthwork estimation, map production, geographic information systems, and hydrographic surveying. One of the most cost-effective techniques is Precise Point Positioning (PPP); it is a Global Navigation Satellite Systems (GNSS) positioning technique to compute precise positions using only a single GNSS receiver. This study aims to evaluate the efficiency of using Global Positioning System (GPS) and GPS/ Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) post-processed kinematic PPP solution for digital elevation model (DEM) production, which is used in earthwork estimation. For this purpose, a kinematic trajectory has been observed in New Aswan City in an open sky area using dual-frequency GNSS receivers. The results showed that, in case of using GPS/GLONASS PPP solution to estimate volumes, the error in earthwork volume estimation varies between 0.07% and 0.16% according to gridding level. On the other hand, the error in volume estimation from GPS PPP solution varies between 0.40% and 0.99%.

2021 ◽  
Author(s):  
Estel Cardellach ◽  
Weiqiang Li ◽  
Dallas Masters ◽  
Takayuki Yuasa ◽  
Franck Borde ◽  
...  

<p>Recently, different studies have shown evidence of signals transmitted by the Global Navigation Satellite Systems (GNSS), coherently reflected over some parts of the ocean, and received from cubesats. In particular, strong coherent scattering has been reported in regions with low water surface roughness as those near continental masses and in atolls. Over open ocean, few coherent signals were reported to be found, although the data sets were somewhat limited and certainly not exhaustive. The level of coherence in reflected GNSS signals depends on the roughness of the  surface (i.e. significant wave height and small scale ripples and waves induced by the wind), the viewing geometry (i.e. incidence angle, or equivalently, elevation angle of the GNSS satellite as seen from the point of reflection), propagation effects (namely ionospheric disturbances) and on the frequency (i.e. particular GNSS band, like L1/E1, L2 or L5/E5). These coherent measurements over ocean follow earlier evidence of coherent GNSS reflections over sea ice which date back to 2005, the time of UK-DMC mission. More recently, Sea Ice Thickness (SIT) retrievals have also been carried out with this technique, at an accuracy comparable to that of SMOS.</p><p>All the observations referred so far were done at a single frequency, L1/E1. So, there is an interest to explore the coherence at the other main GNSS bands, i.e. L2 and L5/E5 as well as to the widelane combinations between them (linear combinations of carrier-phase measurements, of longer effective wavelength). Spire Global radio occultation cubesats work at L1 and L2 frequency bands, and therefore provide unique dual-frequency raw data sets of reflected signals over open ocean, sea ice and inland water bodies. With these, it is possible to study the coherence of these targets at each of the bands and at their widelane combination, as well as the performance of altimetric retrievals at grazing angles of observation (very slant geometries, which facilitate coherence properties of the scattering). The dual-frequency observations can correct the ionospheric effects, and their widelane combinations, of longer effective wavelength, might expand the conditions for coherence. The fact that this new approach is fully compatible with small GNSS radio occultation payloads and missions, might represent a low cost source of precise altimetry to complement larger dedicated missions.</p><p>An ESA research study involving Spire Global and IEEC aims at studying this new potential altimetric technique. Raw data acquisitions from limb-looking antennas of Spire’s cubesat constellation were selected to be geographically and time collocated with ESA Sentinel 3A and 3B passes in order to compare the results of coherence and altimetry. For this study, the raw data at two frequencies, acquired at 6.2 Mbps, are shifted to intermediate frequencies and downloaded to the ground without any further processing. In-house software receivers are then applied to generate the reflected echoes or waveforms, and to track the phase of the carrier signals. Precise altimetry (a few cm in 20 ms integration) is then possible from these observables. The results of this activity will be shown, focusing on altimetric retrievals over large lakes.</p>


2020 ◽  
Author(s):  
Min Li ◽  
Baocheng Zhang ◽  
Xiao Zhang

<p>When sensing the Earth’s ionosphere using pseudorange observations of global navigation satellite systems (GNSS), the satellite and receiver Differential Code Biases (DCBs) account for one of the main sources of error. For the sake of convenience, Receiver DCBs (DCBs) are commonly assumed as constants over a period of one day in the traditional carrier-to-code leveling (CCL) method. Thus, remarkable intraday variability in the receiver DCBs have been ignored in the commonly-used assumption and may seriously restrict the accuracy of ionospheric observable retrieval. The Modified CCL (MCCL) method can eliminate the adverse impact of the short-term variations of RDCBs on the retrieval of ionospheric TEC. With the rapid development of the GPS, GLONASS, Galileo and BeiDou systems, there is a strong demand of precise ionospheric TEC products for multiple constellations and frequencies. Considering the existed MCCL method can only be used for dual-frequency GNSS data, in this study, we extend the two-frequency MCCL method to the multi-frequency and multi-GNSS case and further carry out a series of investigations. In our proposed method, a newly full-rank multi-frequency (more than triple frequency) model with raw observations are established to synchronously estimate both the slant ionospheric delays and the RCB offset with respect to the reference epoch at each individual frequency. Based on the test results, compared to the traditional CCL-method, the accuracy of the ionospheric TEC retrieved using our proposed method can be improved from 5.12 TECu to 0.95 TECu in the case that significant short-term variations existed in receiver DCBs. In addition, the between-epoch fluctuations experienced by receiver code biases at all frequencies tracked by a single receiver can be detected by our the proposed method, and the dependence of multi-GNSS and multi-frequency RDCB offsets upon ambient temperature further are verified in this study. Compared to Galileo system, the RDCB in BDS show higher correlation with temperature. We also found that the RDCB at different frequencies of the same system show various characteristics.</p>


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

AbstractTraditional precise point positioning (PPP) is commonly based on un-differenced ionosphere-free linear combination of Global Positioning System (GPS) observations. Unfortunately, for kinematic applications, GPS often experiences poor satellite visibility or weak satellite geometry in urban areas. To overcome this limitation, we developed a PPP model, which combines the observations of three global navigation satellite systems (GNSS), namely GPS, GLONASS and Galileo. Both un-differenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase GNSS measurements are processed. The performance of the combined GNSS PPP solution is compared with the GPS-only PPP solution using a real test scenario in downtown Kingston, Ontario. Inter-system biases between GPS and the other two systems are also studied and obtained as a byproduct of the PPP solution. It is shown that the addition of GLONASS observations improves the kinematic PPP solution accuracy in comparison with that of GPS-only solution. However, the contribution of adding Galileo observations is not significant due to the limited number of Galileo satellites launched up to date. In addition, BSSD solution is found to be superior to that of traditional un-differenced model.


2020 ◽  
Vol 2 (6(75)) ◽  
pp. 37-41
Author(s):  
Larisa Vladimirovna Manukyan ◽  
Anush Ashotovna Margaryan ◽  
Suren Vladimirovich Tovmasyan ◽  
Narine Vahanovna Harutyunyan

A network of dual-frequency global navigation satellite systems and digital levelling instruments has been established around Spitak, Armenia with the goal of recording changes to the Earth’s crust near to this major earthquake zone. The study was initiated in response to the 1988 Armenian earthquake and is focused on the Sarighamish, Javakhet, Pambak-Sevan, Spitak and Akhuryan faults. Results demonstrate differential movement across fault zones that suggest monitoring of crustal change could be useful in the predicition of large earthquake events.


2020 ◽  
Author(s):  
Teng Liu ◽  
Baocheng Zhang ◽  
Yunbin Yuan ◽  
Xiao Zhang

<p>The ionospheric delay accounts for one of the major errors that the Global Navigation Satellite Systems (GNSS) suffer from. Hence, the ionosphere Vertical Total Electron Content (VTEC) map has been an important atmospheric product within the International GNSS Service (IGS) since its early establishment. In this contribution, an enhanced method has been proposed for the modeling of the ionosphere VTECs. Firstly, to cope with the rapid development of the newly-established Galileo and BeiDou constellations in recent years, we extend the current dual-system (GPS/GLONASS) solution to a quad-system (GPS/GLONASS/Galileo/BeiDou) solution. More importantly, instead of using dual-frequency observations based on the Carrier-to-Code Leveling (CCL) method, all available triple-frequency signals are utilized with a general raw-observation-based multi-frequency Precise Point Positioning (PPP) model, which can process dual-, triple- or even arbitrary-frequency observations compatibly and flexibly. Benefiting from this, quad-system slant ionospheric delays can be retrieved based on multi-frequency observations in a more flexible, accurate and reliable way. The PPP model has been applied in both post-processing global and real-time regional VTEC modeling. Results indicate that with the improved slant ionospheric delays, the corresponding VTEC models are also improved, comparing with the traditional CCL method.</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 2136
Author(s):  
Ibrahim Fayad ◽  
Nicolas Baghdadi ◽  
Clayton Alcarde Alvares ◽  
Jose Luiz Stape ◽  
Jean Stéphane Bailly ◽  
...  

The Global Ecosystem Dynamics Investigation LiDAR (GEDI) is a new full waveform (FW) based LiDAR system that presents a new opportunity for the observation of forest structures globally. The backscattered GEDI signals, as all FW systems, are distorted by topographic conditions within their footprint, leading to uncertainties on the measured forest variables. In this study, we explore how well several approaches based on waveform metrics and ancillary digital elevation model (DEM) data perform on the estimation of stand dominant heights (Hdom) and wood volume (V) across different sites of Eucalyptus plantations with varying terrain slopes. In total, five models were assessed on their ability to estimate Hdom and four models for V. Results showed that the models using the GEDI metrics, such as the height at different energy quantiles with terrain data from the shuttle radar topography mission’s (SRTM) digital elevation model (DEM) were still dependent on the topographic slope. For Hdom, an RMSE increase of 14% was observed for data acquired over slopes higher than 20% in comparison to slopes between 10 and 20%. For V, a 74% increase in RMSE was reported between GEDI data acquired over slopes between 0–10% and those acquired over slopes higher than 10%. Next, a model relying on the height at different energy quantiles of the entire waveform (HTn) and the height at different energy quartiles of the bare ground waveform (HGn) was assessed. Two sets of the HGn metrics were generated, the first one was obtained using a simulated waveform representing the echo from a bare ground, while the second one relied on the actual ground return from the waveform by means of Gaussian fitting. Results showed that both the simulated and fitted models provide the most accurate estimates of Hdom and V for all slope ranges. The simulation-based model showed an RMSE that ranged between 1.39 and 1.66 m (between 26.76 and 39.26 m3·ha−1 for V) while the fitting-based method showed an RMSE that ranged between 1.26 and 1.34 m (between 26.78 and 36.29 m3·ha−1 for V). Moreover, the dependency of the GEDI metrics on slopes was greatly reduced using the two sets of metrics. As a conclusion, the effect of slopes on the 25-m GEDI footprints is rather low as the estimation on canopy heights from uncorrected waveforms degraded by a maximum of 1 m for slopes between 20 and 45%. Concerning the wood volume estimation, the effect of slopes was more pronounced, and a degradation on the accuracy (increased RMSE) of a maximum of 20 m3·ha−1 was observed for slopes between 20 and 45%.


2020 ◽  
Vol 14 (6) ◽  
pp. 1909-1917 ◽  
Author(s):  
Jessica Cartwright ◽  
Christopher J. Banks ◽  
Meric Srokosz

Abstract. Improved digital elevation models (DEMs) of the Antarctic and Greenland ice sheets are presented, which have been derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R). This builds on a previous study (Cartwright et al., 2018) using GNSS-R to derive an Antarctic DEM but uses improved processing and an additional 13 months of measurements, totalling 46 months of data from the UK TechDemoSat-1 satellite. A median bias of under 10 m and root-mean-square errors (RMSEs) of under 53 m for the Antarctic and 166 m for Greenland are obtained, as compared to existing DEMs. The results represent, compared to the earlier study, a halving of the median bias to 9 m, an improvement in coverage of 18 %, and a 4 times higher spatial resolution (now gridded at 25 km). In addition, these are the first published satellite altimetry measurements of the region surrounding the South Pole. Comparisons south of 88∘ S yield RMSEs of less than 33 m when compared to NASA's Operation IceBridge measurements. Differences between DEMs are explored, the limitations of the technique are noted, and the future potential of GNSS-R for glacial ice studies is discussed.


2018 ◽  
Vol 7 (8) ◽  
pp. 300 ◽  
Author(s):  
Serajis Salekin ◽  
Jack Burgess ◽  
Justin Morgenroth ◽  
Euan Mason ◽  
Dean Meason

It is common to generate digital elevation models (DEMs) from aerial laser scanning (ALS) data. However, cost and lack of knowledge may preclude its use. In contrast, global navigation satellite systems (GNSS) are seldom used to collect and generate DEMs. These receivers have the potential to be considered as data sources for DEM interpolation, as they can be inexpensive, easy to use, and mobile. The data interpolation method and spatial resolution from this method needs to be optimised to create accurate DEMs. Moreover, the density of GNSS data is likely to affect DEM accuracy. This study investigates three different deterministic approaches, in combination with spatial resolution and data thinning, to determine their combined effects on DEM accuracy. Digital elevation models were interpolated, with resolutions ranging from 0.5 m to 10 m using natural neighbour (NaN), topo to raster (ANUDEM), and inverse distance weighted (IDW) methods. The GNSS data were thinned by 25% (0.389 points m−2), 50% (0.259 points m−2), and 75% (0.129 points m−2) and resulting DEMs were contrast against a DEM interpolated from unthinned data (0.519 points m−2). Digital elevation model accuracy was measured by root mean square error (RMSE) and mean absolute error (MAE). It was found that the highest resolution, 0.5 m, produced the lowest errors in resulting DEMs (RMSE = 0.428 m, MAE = 0.274 m). The ANUDEM method yielded the greatest DEM accuracy from a quantitative perspective (RMSE = 0.305 m and MAE = 0.197 m); however, NaN produced a more visually appealing surface. In all the assessments, IDW showed the lowest accuracy. Thinning the input data by 25% and even 50% had relatively little impact on DEM quality; however, accuracy decreased markedly at 75% thinning (0.129 points m−2). This study showed that, in a time where ALS is commonly used to generate DEMs, GNSS-surveyed data can be used to create accurate DEMs. This study confirmed the need for optimization to choose the appropriate interpolation method and spatial resolution in order to produce a reliable DEM.


Sign in / Sign up

Export Citation Format

Share Document