effective wavelength
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 12 (2) ◽  
pp. 815
Author(s):  
Genwang Wang ◽  
Ye Ding ◽  
Haotian Long ◽  
Yanchao Guan ◽  
Xiwen Lu ◽  
...  

Nano-manipulation technology, as a kind of “bottom-up” tool, has exhibited an excellent capacity in the field of measurement and fabrication on the nanoscale. Although variety manipulation methods based on probes and microscopes were proposed and widely used due to locating and imaging with high resolution, the development of non-contacted schemes for these methods is still indispensable to operate small objects without damage. However, optical manipulation, especially near-field trapping, is a perfect candidate for establishing brilliant manipulation systems. This paper reports about simulations on the electric and force fields at the tips of metallic probes irradiated by polarized laser outputted coming from a scanning near-field optical microscope probe. Distributions of electric and force field at the tip of a probe have proven that the polarized laser can induce nanoscale evanescent fields with high intensity, which arouse effective force to move nanoparticles. Moreover, schemes with dual probes are also presented and discussed in this paper. Simulation results indicate that different combinations of metallic probes and polarized lasers will provide diverse near-field and corresponding optical force. With the suitable direction of probes and polarization direction, the dual probe exhibits higher trapping force and wider effective wavelength range than a single probe. So, these results give more novel and promising selections for realizing optical manipulation in experiments, so that distinguished multi-functional manipulation systems can be developed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenwen Zhang ◽  
Xinlu Gao ◽  
Xiuxiu Wang ◽  
Desheng Li ◽  
Yiming Zhao ◽  
...  

Heart failure (HF) is the common consequences of various cardiovascular diseases, often leading to severe cardiac output deficits with a high morbidity and mortality. In recent years, light emitting diodes-based therapy (LEDT) has been widely used in multiple cardiac diseases, while its modulatory effects on cardiac function with HF still remain unclear. Therefore, the objective of this study was to investigate the effects of LED-Red irradiation on cardiac function in mice with HF and to reveal its mechanisms. In this study, we constructed a mouse model of HF. We found that LED-Red (630 nm) was an effective wavelength for the treatment of HF. Meanwhile, the application of LED-Red therapy to treat HF mice improved cardiac function, ameliorate heart morphology, reduced pulmonary edema, as well as inhibited collagen deposition. Moreover, LED-Red therapy attenuated the extent of perivascular fibrosis. Besides, LED-Red irradiation promoted calcium transients in cardiomyocytes as well as upregulated ATP synthesis, which may have positive implications for contractile function in mice with HF. Collectively, we identified that LED-Red exerts beneficial effects on cardiac function in HF mice possibly by promoting the synthesis of ATP.


2021 ◽  
Author(s):  
Estel Cardellach ◽  
Weiqiang Li ◽  
Dallas Masters ◽  
Takayuki Yuasa ◽  
Franck Borde ◽  
...  

<p>Recently, different studies have shown evidence of signals transmitted by the Global Navigation Satellite Systems (GNSS), coherently reflected over some parts of the ocean, and received from cubesats. In particular, strong coherent scattering has been reported in regions with low water surface roughness as those near continental masses and in atolls. Over open ocean, few coherent signals were reported to be found, although the data sets were somewhat limited and certainly not exhaustive. The level of coherence in reflected GNSS signals depends on the roughness of the  surface (i.e. significant wave height and small scale ripples and waves induced by the wind), the viewing geometry (i.e. incidence angle, or equivalently, elevation angle of the GNSS satellite as seen from the point of reflection), propagation effects (namely ionospheric disturbances) and on the frequency (i.e. particular GNSS band, like L1/E1, L2 or L5/E5). These coherent measurements over ocean follow earlier evidence of coherent GNSS reflections over sea ice which date back to 2005, the time of UK-DMC mission. More recently, Sea Ice Thickness (SIT) retrievals have also been carried out with this technique, at an accuracy comparable to that of SMOS.</p><p>All the observations referred so far were done at a single frequency, L1/E1. So, there is an interest to explore the coherence at the other main GNSS bands, i.e. L2 and L5/E5 as well as to the widelane combinations between them (linear combinations of carrier-phase measurements, of longer effective wavelength). Spire Global radio occultation cubesats work at L1 and L2 frequency bands, and therefore provide unique dual-frequency raw data sets of reflected signals over open ocean, sea ice and inland water bodies. With these, it is possible to study the coherence of these targets at each of the bands and at their widelane combination, as well as the performance of altimetric retrievals at grazing angles of observation (very slant geometries, which facilitate coherence properties of the scattering). The dual-frequency observations can correct the ionospheric effects, and their widelane combinations, of longer effective wavelength, might expand the conditions for coherence. The fact that this new approach is fully compatible with small GNSS radio occultation payloads and missions, might represent a low cost source of precise altimetry to complement larger dedicated missions.</p><p>An ESA research study involving Spire Global and IEEC aims at studying this new potential altimetric technique. Raw data acquisitions from limb-looking antennas of Spire’s cubesat constellation were selected to be geographically and time collocated with ESA Sentinel 3A and 3B passes in order to compare the results of coherence and altimetry. For this study, the raw data at two frequencies, acquired at 6.2 Mbps, are shifted to intermediate frequencies and downloaded to the ground without any further processing. In-house software receivers are then applied to generate the reflected echoes or waveforms, and to track the phase of the carrier signals. Precise altimetry (a few cm in 20 ms integration) is then possible from these observables. The results of this activity will be shown, focusing on altimetric retrievals over large lakes.</p>


2021 ◽  
Vol 58 (7) ◽  
pp. 0712002
Author(s):  
郭小庭 Guo Xiaoting ◽  
刘晓军 Liu Xiaojun ◽  
雷自力 Lei Zili ◽  
杨文军 Yang Wenjun ◽  
徐龙 Xu Long

2020 ◽  
Vol 38 (10) ◽  
pp. 581-590
Author(s):  
Angela Domínguez Camacho ◽  
Diana Montoya Guzmán ◽  
Sergio Andrés Velásquez Cujar

2020 ◽  
pp. 93-100
Author(s):  
Sherif Hamdy ElGohary ◽  
Yomna Sabah Mohamed ◽  
Mennatallah Hany Elkhodary ◽  
Omnya Ahmed ◽  
Mennatallah Hesham

Among the photosensitizers used in Photodynamic therapy (PDT) technique for cancer treatment, it is found out that the Methylene blue and glycoconjugates chlorine are the best ones for this purpose. In this paper, it is suggested to use Active Capsule Wireless Endoscopy Robot instead of the traditional endoscope. The capsule has many valuable features. It uses LEDs as a source of light in the PDT to kill the colon cancer cells. So, the doctor can make use of the advantage of applying the LED light locally at the tumor which was previously injected by the photosensitizers, the light activates these photosensitizers and a photochemical reaction starts that makes the colon cancer cells die. The light with effective wavelength and power density, energy level and controlled LED light intensity will be applied. Active locomotion capsule endoscopy with an electromagnetic actuation system that can achieve a 3-D locomotion and guidance within the digestive system. The paper also discussed how to manage the required power in the capsule for all parts, LEDs, camera, transceiver, and locomotion.


2020 ◽  
Vol 10 (6) ◽  
pp. 2051
Author(s):  
Woo-Lim Jeong ◽  
Kyung-Pil Kim ◽  
Jung-Hong Min ◽  
Jun-Yeob Lee ◽  
Seung-Hyun Mun ◽  
...  

Hybrid concentrator photovoltaic (CPV) architectures that combine CPV modules with low-cost solar cells have the advantage of functioning well in modest direct normal irradiance (DNI) regions as well as high-DNI regions, where these architectures allow for higher performance in a limited space. For higher performance of a hybrid CPV module, we optimized the secondary optical element (SOE) using raytracing software and conducted experimental measurements that consider the effective wavelength range. Our experiments with the optimized SOE (θ = 30°, h = 15 mm) demonstrated a maximum output power on the triple-junction cell and polycrystalline silicon cell of 212.8 W/m2 and 5.14 W/m2, respectively.


2019 ◽  
Vol 14 (2) ◽  
pp. 1-5
Author(s):  
Paulo Fernandes Silva Júnior ◽  
Ewaldo Santana ◽  
Mauro Sergio Silva Pinto ◽  
Alexandre Serres ◽  
Camila Caroline Rodrigues De Albuquerque ◽  
...  

A flower-shape bio-inspired aperture-coupled antenna array for on-chip application, generated by Gielis formula, operating in industrial, scientific and medical (ISM) band at 60 GHz (57 GHZ to 64 GHz) is presented in this paper. The antenna proposed is composed of a transmission feed line followed by an aperture and patch element built in aluminum, with 2 micrometers of thickness, lying on two layers of silicon with 200 micrometers of thickness each. Dimensions of the antennas were calculated according to the effective wavelength for the resonance frequency at 60 GHz. Simulations were performed in the commercial software ANSYS® Electronics Desktop. The use of the bio-inspired flower-shape promotes more compact structures with greater perimeter, rearranging these shapes into an antenna array provided a gain and a bandwidth increase in the design, 3.11dBi and 2.86GHz, respectively, which resulted in a maximum gain of 8.82 dBi and a total bandwidth of 5.88 GHz.


BioControl ◽  
2019 ◽  
Vol 64 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Takuya Uehara ◽  
Takumi Ogino ◽  
Akio Nakano ◽  
Toshiyuki Tezuka ◽  
Terumi Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document