scholarly journals Comparative Study About Different Experimental Layouts Used on Single Point Incremental Forming Process

2018 ◽  
Vol 70 (1) ◽  
pp. 21-27
Author(s):  
Mihaela Oleksik

Abstract The present paper proposes a comparative study between two of the most used experimental layouts on the single point incremental forming with the advantages and disadvantages of these experimental layouts. After a short presentation of the newest technological opportunities on single point incremental forming, the paper presents a classification of the experimental layouts used on this kind of forming process. The comparative study highlights the advantages and the disadvantages of using the universal milling machines and the industrial robots on single point incremental forming. There are presented the results focused on thinning and forces in the SPIF process.

2014 ◽  
Vol 622-623 ◽  
pp. 375-381
Author(s):  
Valentin Oleksik ◽  
Adrian Pascu ◽  
Ioan Bondrea ◽  
Eugen Avrigean ◽  
Liviu Rosca

The present paper proposes a comparative study in order to determine the springback in single point incremental forming process. Using the Ls-Dyna software the process was simulated for one piece in frustum of pyramid shape. In the end of the explicit dynamic analysis, it was run, using the same software, an implicit analysis to determine the springback. For this comparison study we selected four different shell formulations. The results obtained in this simulation were compared with those obtained experimentally for the same part. The experimental research was conducted on a robot and, on the opposite side of the machined surface, an Aramis measuring optical system was placed to allow the online determination of deformations, displacements and thinning of material. Also, using this system, the springback was determined at the end of forming process. The closest values were obtained when using fully integrated formulation with thickness-stretch with 11 integration points on material thickness.


2013 ◽  
Vol 554-557 ◽  
pp. 2221-2229 ◽  
Author(s):  
João B.S. Farias ◽  
Miguel A.B.E. Martins ◽  
Daniel G. Afonso ◽  
Sonia R.H. Marabuto ◽  
Jorge A. Ferreira ◽  
...  

Single point incremental forming has attracted the interest of researchers in the last decade for the production of prototypes and small batch production of sheet-based parts [1, 2]. This technique allows the manufacture of parts without using expensive die sets. The SPIF (Single point incremental forming) process can be performed on different equipments such as adapted CNC milling machines, serial robots and built proposed machines [3]. Every solution has advantages and disadvantages. This work presents the CAD/CAM strategies for a parallel kinematics SPIF machine, designed and built at the University of Aveiro [3]. This machine brings a new approach to the SPIF industry. The machinery used to perform SPIF operations has limitations in their work volume with limited movements and in the magnitude of applicable forces. With that in mind, this machine was projected to overcome that obstacle, and was provided with a system with 6 degrees of freedom, while maintaining the ability to apply high loads. The disadvantage is the increase in volume occupied by the kinematic system. The manufacture of new parts could be reached out with more flexibility on the chosen tool path. The first step is the product design in the commercial CAD system. Next step is generating the tool path of the forming tool. This step is very important to achieve the desired part shape. It is used a commercial CAM system (EdgeCAM 2012®), which has resources from three up to five axis strategies. The last step is to send the information to the machine’s control system, based on real-time software. This paper will describe each step with more details.


2021 ◽  
Vol 883 ◽  
pp. 217-224
Author(s):  
Yannick Carette ◽  
Marthe Vanhulst ◽  
Joost R. Duflou

Despite years of supporting research, commercial use of the Single Point Incremental Forming process remains very limited. The promised flexibility and lack of specific tooling is contradicted by its highly complex deformation mechanics, resulting in a process that is easy to implement but where workpiece accuracy is very difficult to control. This paper looks at geometry compensation as a viable control strategy to increase the accuracy of produced workpieces. The input geometry of the process can be compensated using knowledge about the deformations occurring during production. The deviations between the nominal CAD geometry and the actual produced geometry can be calculated in a variety of different ways, thus directly influencing the compensation. Two different alignment methods and three deviation calculation methods are explained in detail. Six combined deviation calculation methods are used to generate compensated inputs, which are experimentally produced and compared to the uncompensated part. All different methods are able to noticeably improve the accuracy, with the production alignment and closest point deviation calculation achieving the best results


2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.


2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


2014 ◽  
Vol 494-495 ◽  
pp. 497-501 ◽  
Author(s):  
Jin Han Wu ◽  
Qiu Cheng Wang

As there is no sufficient support between the single moving tool and fixture, the formed metal sheet is easy to bend in single point incremental forming (SPIF). Double sided incremental forming (DSIF) is proposed in which two tools are used on each side of the sheet to improve the components forming accuracy. Element finite method is introduced to simulate the forming process with both DSIF and SPIF toolpaths and the component geometric accuracies are compared. The simulation result shows the DSIF toolpaths can obtain better geometric accuracy than SPIF.


Sign in / Sign up

Export Citation Format

Share Document