scholarly journals Fog-LAEEBA: Fog-assisted Link aware and energy efficient protocol for wireless body area network

2021 ◽  
Vol 13 (1) ◽  
pp. 180-194
Author(s):  
Kifayat Ullah ◽  
Haris Khan

Abstract The integration of Wireless Sensor Networks (WSN) and cloud computing brings several advantages. However, one of the main problems with the existing cloud solutions is the latency involved in accessing, storing, and processing data. This limits the use of cloud computing for various types of applications (for instance, patient health monitoring) that require real-time access and processing of data. To address the latency problem, we proposed a fog-assisted Link Aware and Energy E cient Protocol for Wireless Body Area Networks (Fog-LAEEBA). The proposed solution is based on the already developed state-of-the-art protocol called LAEEBA. We implement, test, evaluate and compare the results of Fog-LAEEBA in terms of stability period, end-to-end delay, throughput, residual energy, and path-loss. For the stability period all nodes in the LAEEBA protocol die after 7445 rounds, while in our case the last node dies after 9000 rounds. For the same number of rounds, the end-to-end delay is 2 seconds for LAEEBA and 1.25 seconds for Fog-LAEEBA. In terms of throughput, our proposed solution increases the number of packets received by the sink node from 1.5 packets to 1.8 packets. The residual energy of the nodes in Fog-LAEEBA is also less than the LAEEBA protocol. Finally, our proposed solution improves the path loss by 24 percent.

Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


Author(s):  
Jay Manalastas Ventura ◽  
Arnel Fajardo ◽  
Ruji Medina

<span>Wireless Body Area Sensor Network (WBASN) or Wireless Body Area Network (WBAN) is a growing field in healthcare applications. It enables remote monitoring of patient’s physiological data through wireless communication. It is composed of sensor network which collects physiological data from the patient. There are several issues concerning WBAN such as security, power, routing protocol to address QoS metrics (reliability, end-to-end delay, and energy efficiency), etc. The focus of the study is the issue on different QoS metrics. There were several QoS aware routing protocol that has been proposed which implements multiple queues for different types of data. However, one issue on multiple queue system is starvation, end-to-end delay, and reliability. The study proposed an efficient priority queue based data transmission that improves the end-to-end delay, reliability, and queuing delay of QoS aware routing protocol.</span>


2021 ◽  
Vol 9 (1) ◽  
pp. 71-79
Author(s):  
Jacqualine Cristhy Ujil

The recent advancements in technologies have allowed us to come so far and resulted in many breakthroughs. One of the various examples is internet of things, wireless communication, and cloud computing which can be useful if utilize in many fields. In the field of medical, these advancements allowed any medical centres to improve patient’s health remotely simply by using wearable devices on patients that then will amalgamate with the wireless body area network (WBAN). However, WBAN has limited resources which limits its services. To solve this problem, cloud computing is used to provide storage and computation. Unfortunately, these methods allow the system to be vulnerable to various malicious attacks. Attackers can easily gain access to the medical records of patients hence the integrity of security and privacy of confidential data have been compromised. In this paper, we presented a secure protocol for cloud-assisted database using multi-factor authentication and blockchain as an added measure to ensure security. Accordingly, we prove that the presented scheme offers more security and privacy. Therefore, it is the most practical method to be applied in the medical field.


Wireless body area networks with routing and collaborative fuzzy mechanisms for network analysis have become more efficient in today’s healthcare technology. In this article, a novelthreshold-based probability theory and fuzzy logic cost-effective routing technique is proposed that depends on location and residual energy attributes to reduce the overall energy consumption among the sensing nodes and increasing network lifetime. Attributes such as energy and distance are considered for generating if-then rules and membership functions. A fuzzy conditional reasoning is performed using interference mechanism and a defuzzification methodology is applied on the computed cost value to make an efficient choice. Mamdani-Fuzzy logic toolbox in matrix laboratory is used to evaluate the simulation performance of the proposed method with that of other existing conventional methods. From the results obtained, it is observed that for the different metrics, the proposed technique provides improvements in terms of energy efficiency, stability period and network lifetime.


Author(s):  
Srijan Goswami ◽  
Payel Roy ◽  
Nilanjan Dey ◽  
Sayan Chakraborty

This chapter introduces the combination of wireless body area network and mobile cloud computing in healthcare. The increased growth of low-power integrated circuits, physiological sensors and wireless communication has introduced a new generation of wireless sensor networks. Cloud computing is on high demand, whereas in case of mobile cloud computing the device is much more user friendly to manage the information. The combination of wireless body area network (WBAN) and mobile cloud computing (MCC) promises a better performance to the users immediately. It is more feasible to wire a sensor which performs the required medical tests and provides the information through devices like mobile phones and tablets. In this chapter, a theoretical study on the combination of WBAN and mobile cloud computing has been done.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinesh Kumar Anguraj ◽  
Abul Bashar ◽  
R. Nidhya ◽  
P.K. Shimna ◽  
Renjith V. Ravi

PurposeThe purpose of this paper is energy consumption and security. To extend the sensor’s life span, saving the energy in a sensor is important. In this paper, biosensors are implanted or suited on the human body, and then, transposition has been applied for biosensors for reducing the sensor distance from the sink node. After transposition path loss has been calculated, security is maintained and also compared the results with the existing strategies.Design/methodology/approachNowadays, one of the most emergent technologies is wireless body area network (WBAN), which represents to improve the quality of life and also allow for monitoring the remote patient and other health-care applications. Traffic routing plays a main role together with the relay nodes, which is used to collect the biosensor’s information and send it towards the sink.FindingsTo calculate the distance and observe the position, Euclidean distance technique is used. Path loss is the main parameter, which is needed to reduce for making better data transmission and to make the network stability. Routing protocols can be designed, with the help of proposed values of sensors locations in the human body, which gives good stability of network and lifetime. It helps to achieve as the less deplete energy.Originality/valueThis scheme is compared with the two existing schemes and shows the result in terms of parameter path loss. Moreover, this paper evaluated a new method for improving the security in WBAN. The main goal of this research is to find the optimal sensor location on the body and select the biosensor positions where they can get less energy while transmitting the data to the sink node, increasing the life span in biosensors, decreasing memory space, giving security, controlling the packet complexity and buffer overflow and also fixing the damages in the existing system.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Maryam El Azhari ◽  
Nadya El Moussaid ◽  
Ahmed Toumanari ◽  
Rachid Latif

The phenomenal advances in electronics contributed to a widespread use of distributed sensors in wireless communications. A set of biosensors can be deployed or implanted in the human body to form a Wireless Body Area Network (WBAN), where various WBAN PHY layers are utilized. The WBAN allows the measurement of physiological data, which is forwarded by the gateway to the base station for analysis purposes. The main issue in conceiving a WBAN communication mechanism is to manage the residual energy of sensors. The mobile agent system has been widely applied for surveillance applications in Wireless Sensor Networks (WSNs). It consists in dispatching one or more mobile agents simultaneously to collect data, while following a predetermined optimum itinerary. The continuous use of the optimal itinerary leads to a rapid depletion of sensor nodes batteries, which minimizes the network lifetime. This paper presents a new algorithm to equalize the energy consumption among sensor motes. The algorithm exploits all the available paths towards the destination and classifies them with respect to the end-to-end delay and the overall energy consumption. The proposed algorithm performs better compared to the optimal routing path. It increases the network lifetime to the maximum by postponing routing of data via the most-recently used path, and it also maintains data delivery within the delay interval threshold.


Sign in / Sign up

Export Citation Format

Share Document