scholarly journals Energy Efficient Fuzzy Cost-Effective Routing for Transmission of Critical Physiological Parameters in Wireless Body Area Network under Emergency Scenarios

Wireless body area networks with routing and collaborative fuzzy mechanisms for network analysis have become more efficient in today’s healthcare technology. In this article, a novelthreshold-based probability theory and fuzzy logic cost-effective routing technique is proposed that depends on location and residual energy attributes to reduce the overall energy consumption among the sensing nodes and increasing network lifetime. Attributes such as energy and distance are considered for generating if-then rules and membership functions. A fuzzy conditional reasoning is performed using interference mechanism and a defuzzification methodology is applied on the computed cost value to make an efficient choice. Mamdani-Fuzzy logic toolbox in matrix laboratory is used to evaluate the simulation performance of the proposed method with that of other existing conventional methods. From the results obtained, it is observed that for the different metrics, the proposed technique provides improvements in terms of energy efficiency, stability period and network lifetime.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Maryam El Azhari ◽  
Nadya El Moussaid ◽  
Ahmed Toumanari ◽  
Rachid Latif

The phenomenal advances in electronics contributed to a widespread use of distributed sensors in wireless communications. A set of biosensors can be deployed or implanted in the human body to form a Wireless Body Area Network (WBAN), where various WBAN PHY layers are utilized. The WBAN allows the measurement of physiological data, which is forwarded by the gateway to the base station for analysis purposes. The main issue in conceiving a WBAN communication mechanism is to manage the residual energy of sensors. The mobile agent system has been widely applied for surveillance applications in Wireless Sensor Networks (WSNs). It consists in dispatching one or more mobile agents simultaneously to collect data, while following a predetermined optimum itinerary. The continuous use of the optimal itinerary leads to a rapid depletion of sensor nodes batteries, which minimizes the network lifetime. This paper presents a new algorithm to equalize the energy consumption among sensor motes. The algorithm exploits all the available paths towards the destination and classifies them with respect to the end-to-end delay and the overall energy consumption. The proposed algorithm performs better compared to the optimal routing path. It increases the network lifetime to the maximum by postponing routing of data via the most-recently used path, and it also maintains data delivery within the delay interval threshold.


Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


2021 ◽  
Vol 13 (1) ◽  
pp. 180-194
Author(s):  
Kifayat Ullah ◽  
Haris Khan

Abstract The integration of Wireless Sensor Networks (WSN) and cloud computing brings several advantages. However, one of the main problems with the existing cloud solutions is the latency involved in accessing, storing, and processing data. This limits the use of cloud computing for various types of applications (for instance, patient health monitoring) that require real-time access and processing of data. To address the latency problem, we proposed a fog-assisted Link Aware and Energy E cient Protocol for Wireless Body Area Networks (Fog-LAEEBA). The proposed solution is based on the already developed state-of-the-art protocol called LAEEBA. We implement, test, evaluate and compare the results of Fog-LAEEBA in terms of stability period, end-to-end delay, throughput, residual energy, and path-loss. For the stability period all nodes in the LAEEBA protocol die after 7445 rounds, while in our case the last node dies after 9000 rounds. For the same number of rounds, the end-to-end delay is 2 seconds for LAEEBA and 1.25 seconds for Fog-LAEEBA. In terms of throughput, our proposed solution increases the number of packets received by the sink node from 1.5 packets to 1.8 packets. The residual energy of the nodes in Fog-LAEEBA is also less than the LAEEBA protocol. Finally, our proposed solution improves the path loss by 24 percent.


Author(s):  
Muhammad Mateen Yaqoob ◽  
Kulsoom Fatima ◽  
Shahab Shamshirband ◽  
Amir Mosavi ◽  
Waqar Khurshid

A Wireless Body Area Sensor Network (WBASN) is combination of numerous sense nodes, positioned onto/close or inside a person body. Wireless Body Area Sensor Networks (WBASN) is a developing automation trend that exploits wireless sensor nodes to put instantaneous wearable well-being of ill person to improve individual’s existence. The sensor nodes might be used outwardly to observe abundant health parameters (like heart activity, blood pressure and cholesterol) of an ill person at a vital site within hospital. Hence the goal of WBASN is much crucial, enhancing the lifetime of nodes is compulsory to sustain many issues such as utility and efficiency. It is essential to evaluate time that when the first node will die it we want to refresh or change the battery reason is that loss of crucial information is not tolerable. The lifetime is termed as the time interval when a first node dies out due to battery exhaustion.  In our proposed protocol life time of a network is the main concern as well other protocol related issues such as throughput, path loss, and residual energy. Bio-sensors are used for deployment on human body. Poisson distribution and equilibrium model techniques have been used for attaining the required results. Multi-hop network topology and random network node deployment used to achieve minimum energy consumption and longer network lifetime.


2020 ◽  
Vol 14 ◽  
Author(s):  
Tejinder Kaur ◽  
Navneet Kaur ◽  
Gurleen Sidhu

: The expansion in an average lifetime and increased cost of health analysis have resulted in cost-effective methods for healthcare monitoring. Wireless Body Area Network (WBAN) is used for continuous monitoring of patient to enhance health care and quality of life. As the sensors worn on the human body have small size, low transmission power and restricted battery, it necessitates the development of energy efficient routing protocols for increasing the network lifetime. This paper proposes an Optimized Energy Efficient and Quality-of-Service aware Routing Protocol (OEEQR) to achieve longer network lifetime, energy efficiency, lower delay and high throughput. In the proposed protocol, the cost function with residual energy, distance and path loss as its parameters is optimized using Particle Swarm Optimization (PSO) technique. The proposed cost function determines the best feasible next hop to send the data to the sink.


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771881584 ◽  
Author(s):  
Abdullahi Ibrahim Abdu ◽  
Oguz Bayat ◽  
Osman Nur Ucan

Wireless body area network is a type of wireless sensor network that enables efficient healthcare system. To minimize frequent sensor replacement due to resource restrictions, it is necessary to improve energy efficiency in wireless body area network. This article deals with energy efficiency and quality-of-service improvement together in novel wireless body area network architecture. A novel wireless body area network architecture is designed with dual sink nodes in order to minimize delay and energy consumption. A novel insistence-aware medium access control protocol which is aware of criticality of sensed data is presented in the proposed wireless body area network. Prior knowledge-based weighted routing algorithm is responsible to select optimal route for data transmission. In prior knowledge-based weighted routing, weight value is computed by considering significant metrics such as residual energy, link stability, distance, and delay in order to improve energy efficiency and quality of service in the network. Energy consumption is further minimized by incorporating graph-based sleep scheduling algorithm. In graph-based sleep scheduling, criticality of sensor node is also considered as major metric. In coordinator, split and map–based neural network classifier is involved to perform packet classification. After classification, packets are assigned to corresponding sink node according to packet type. Then, throughput and delay metrics are improved by frame aggregation process which is involved in sink node. Extensive simulation in OMNeT++ shows better performance in network lifetime, throughput, residual energy, dropped packets, and delay.


Sign in / Sign up

Export Citation Format

Share Document