Characteristics of Laminates for Car Seats

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Eva Batič ◽  
Dunja Šajn Gorjanc

AbstractIn the presented research, 11 different laminates were compared, 8 of them were two-layered 3 of them were three-layered laminates. The laminates that were analyzed vary by the type of face-side textile material (knitted and nonwoven textiles), density and thickness of the foam, and specific properties (higher air permeability and low-emission foam). Depending on the different types of laminates, different laminating processes are used: hot-melt, flame, and powder laminations. The purpose of the presented research is to analyze the basic characteristics of the different laminate structures. Properties that are important for these types of laminates are the number of layers, areal density, thickness, resistance to rubbing, fire resistance, water vapor permeability, air permeability, breaking force and extension, thermal conductivity, and stratification. We found that the properties of laminates were not affected by the density and thickness of the foam. Nonwovens and other laminate components do not perform because they have lower abrasion resistance and lower tensile strength than knitted fabrics as the face layer. Knit laminates have good abrasion resistance, high air permeability, and water vapor permeability. Both are self-extinguishing to the first or second mark. Three-layered laminates have lower thermal conductivity and air permeability than two-layered laminates.

2019 ◽  
Vol 90 (9-10) ◽  
pp. 1118-1129
Author(s):  
Sibel Şardağ ◽  
Tuba Toprak ◽  
Pervin Aniş

This study aimed to investigate the comfort and physical properties of raw and finished knitted fabrics made of yarns with different Tencel/cotton blend ratios. For this purpose, Ne 20 yarns were produced with the same twist coefficient on the same production line. Fabric samples were produced on the same knitting machine. The raw fabrics were subjected to two different combined enzymatic pre-treatments and dyeing processes. In the first process, enzymatic defibrillation and dyeing were carried out in the same bath. In the second, enzymatic bleach clean-up, defibrillation and dyeing were conducted in the same bath. The comfort and physical properties of all the raw and finished fabric samples were measured according to the relevant standards. The results were assessed statistically. The results of this study showed that with increased percentage of Tencel in the blend, the water vapor and air permeability, fabric roughness, pilling, thermal absorption and loss of mass values of the fabrics increased, whereas thermal conductivity values decreased. It was observed that the fabrics which were subjected to enzymatic defibrillation and dyeing processes in a single bath gave lower surface roughness and abrasion values but higher air permeability values; while those subjected to enzymatic bleach clean-up, defibrillation and dyeing in a single bath gave higher thermal conductivity and thermal absorptivity values. Comparison of the two processes showed that there were no significant differences in the pilling and the water vapor permeability values obtained from both processes.


2020 ◽  
Vol 32 (6) ◽  
pp. 837-847 ◽  
Author(s):  
Sadaf Aftab Abbasi ◽  
Arzu Marmaralı ◽  
Gözde Ertekin

PurposeThis paper investigates the thermal comfort properties of quilted (jersey cord) fabrics produced with different width of diamond pattern, different filling yarn linear density and different types of material.Design/methodology/approachA total of 12 fabrics were knitted by varying the width of diamond pattern (1 and 3 cm), the filling yarn linear density (300 and 900 denier) and the type of materials (cotton, polyester and their combination). In this regard, air permeability, thermal conductivity, thermal resistance, thermal absorptivity and relative water vapor permeability of these fabrics were measured and evaluated statistically.FindingsThe results showed that fabrics knitted using cotton yarn in both front and back surfaces exhibit higher thermal conductivity, thermal absorptivity and relative water vapor permeability characteristics; whereas samples knitted using polyester yarn in both surfaces have higher air permeability and thermal resistance. As the linear density of filling yarn increases, thickness and thermal resistance of the samples increase and air permeability, thermal conductivity, water vapor permeability characteristics decrease. When the effect of the width of diamond pattern compared, it is seen that an increase in the width of pattern lead to an increase in thickness and thermal resistance and a decrease in thermal conductivity, thermal absorptivity and water vapor permeability values.Originality/valueMany researches were carried out on the thermal comfort properties of knitted fabrics, however there is a lack of research efforts regarding thermal comfort properties of quilted fabrics.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000 ◽  
Author(s):  
Nida Oğlakcioğlu ◽  
Ahmet Çay ◽  
Arzu Marmarali ◽  
Emel Mert

Engineered yarns are used to provide better clothing comfort for summer garments because of their high levels of moisture and water vapor management. The aim of this study was to investigate the characteristics of knitted structures that were produced using different types of polyester yarns in order to achieve better thermal comfort properties for summer clothing. However they are relatively expensive. Therefore, in this study engineered polyester yarns were combined with cotton and lyocell yarns by plying. This way, the pronounced characteristics of these yarns were added to the knitted structure as well. Channeled polyester, hollow polyester, channeled/hollow blended polyester, cotton, and lyocell yarns were plied with each other and themselves. Then, single jersey structures were knitted using these ply yarn combinations and air permeability, thermal resistance, thermal absorptivity, water vapor permeability, moisture management, and drying properties were tested. The results indicate that channeled PES fabrics are advantageous for hot climates and high physical activities with regards to high permeability and moisture transfer and also to fast drying properties. Besides, air permeability and thermal properties improved through the combination of lyocell yarn with engineered polyester yarns. However, the use of lyocell or cotton with engineered yarns resulted in a to a decrease in moisture management properties and an increase in drying times


Author(s):  
Логанина ◽  
Valentina Loganina ◽  
Фролов ◽  
Mikhail Frolov

The application of ash microspheres in lime dry construction mixtures, designed for finishing aerated. It is shown that on the basis of dry ash mixtures with microspheres characterized by coating a sufficient strength, low thermal conductivity, high water vapor permeability, resistance to the action of the slanting rain.


1959 ◽  
Vol 37 (4) ◽  
pp. 413-416 ◽  
Author(s):  
William Woodside

Following the analogy between the laws of heat conduction and vapor diffusion, two theoretical expressions for the thermal conductivity of a composite medium are applied to the water vapor permeability coefficient of certain porous media. It is shown that both expressions reduce to a form very similar to the empirical relationships found by Penman and Edenholm for soils, glass spheres, charcoal, and cellular concrete. The calculation of the variation of water vapor permeability with density for a cellular lightweight concrete is illustrated.


Author(s):  
Adnan Mazari ◽  
Funda Buyuk ◽  
Antonin Havelka

In this paper, four commonly used car seat covers, made from leather as well as from woven, knitted and 3D spacer fabrics are tested as sandwiched and separate layers to determine the effect of the lamination and layers on air and water vapor permeability. Different combinations of interlining materials are also tested to obtain the optimum comfortable car seat cover. This analysis gives us a real idea of which layer negatively affects the breathability of the car seat. The focus of this part of research was to identify the issues within the car seat material instead of factors like external cooling or the clothing of the driver. It was observed that the polyurethane (PU) foam and lamination significantly reduce the permeability of the car seats. The 3D spacer fabric shows the best top layer properties as compared to classical woven, leather or knitted car seat covers. The research shows how layers and lamination cause thermo-physiological discomfort of car seats.


2014 ◽  
Vol 556-562 ◽  
pp. 154-157
Author(s):  
Jin Ming Lu

The moisture sorption property, air permeability, capillary effect property of five kinds of Coolmax weft-varied fabric were tested. Meanwhile,the regression equations of Coolmax fiber content with warp wicking height,weft wicking height,water vapor permeability and air permeability were also established. The result showed that the moisture sorption property and air permeability,capillary effect property of cotton/Coolmax weft-varied fabrics are better with the increase of Coolmax fiber in the weft.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qing Chen ◽  
Dahua Shou ◽  
Rong Zheng ◽  
Ka-Po Maggie Tang ◽  
Bailu Fu ◽  
...  

AbstractWarp-knitted spacer fabrics are generally used for sportswear, functional clothing, protective clothing, and other applications. This article studied the heat and mass transfer properties of polyester warp-knitted spacer fabrics from low thickness (2 mm) to high thickness (20 mm), from low mass (247.34 g/m2) to high mass (1,585.9 g/m2), and surface structure in plain or mesh construction. Water vapor permeability, air permeability, water absorption, and thermal insulation property were conducted to evaluate the spacer fabrics. The results revealed that with increasing volume density the water vapor permeability of spacer fabrics decreased, but the water absorption ratio increased. The water vapor permeability of fabrics increased when thickness decreased and volume density increased. It was further found that spacer fabrics with mesh worn nearby the skin and plain structure worn far from the skin could facilitate water vapor and air transmission. The difference of 8.82% for water vapor permeability and 14.19% for air permeability were found between testing mesh side up and down for the spacers (2.56 and 3.37 mm), respectively. Thermal insulation ratio was highly and significantly correlated with heat transfer coefficient at −0.958 and with thickness at 0.917. Thermal insulation ratio is highly and significantly correlated with air permeability at 0.941.


2013 ◽  
Vol 67 (6) ◽  
pp. 941-950 ◽  
Author(s):  
Dusan Rajic ◽  
Zeljko Kamberovic ◽  
Radovan Karkalic ◽  
Negovan Ivankovic ◽  
Zeljko Senic

Fires are an accompanying manifestation in modern weaponry use and in case of different accidents in peacetime. The standard military uniform is a primary barrier in protection of a soldier?s body from all external influences, including the thermal ones which can cause burns. The minimum thermal resistance to the effect of burning napalm mixture (BNM) in individual uniform garment materials has been determined, and is higher at simultaneous use of more materials one over another (the so-called sandwich materials), where the best thermal protection give sandwich materials with an air interspace. The requirement for the thermal resistance of the material of the filtrating protective suit (FPS) to the effect of BNM (? 15 s) has been fully met. The highest thermal resistance has been demonstrated by the FPS whose inner layer is made of polyurethane foam with active carbon. A proportional dependence between the thermal resistance of FPS to the effect of BNM and water vapor permeability through this garment mean has been determined, and reversed in respect to air permeability.


Sign in / Sign up

Export Citation Format

Share Document