Nonlinear dynamics of mechanical system with external excitation

Open Physics ◽  
2005 ◽  
Vol 3 (1) ◽  
Author(s):  
Bogusław Ryczek

AbstractThis paper attends to the problem of vibration of a self-excited mechanical system with a relatively complicated, history dependent dry friction model. The experimentally identified friction model allows description of various cases of stationary and transient motion. The system is composed of a lumped mass that interacts with a belt by means of dry friction. The system is additionally subjected to an external harmonic excitation through elastic element. The main objective of the experimental research has been focused on the analysis of the system behaviour for various values of the excitation frequency. This paper includes also computer simulation of the vibration of the considered system and comparison between the results of experimental and theoretical analysis. The comparison enables the assumed friction model for steel-polyester pair to be verified. It was another goal of the investigations.

Author(s):  
Robert L. Lowe ◽  
Christopher G. Cooley

Abstract This paper investigates the nonlinear dynamics of square dielectric elastomer membranes under time-dependent, through-thickness compressive loading. The dielectric elastomer is modeled as an isotropic ideal dielectric, with mechanical stiffening at large strains captured using the Gent hyperelastic constitutive model. The equation of motion for the in-plane membrane stretch is derived using Hamilton’s principle. The static response of the membrane is first investigated, with equilibrium stretches calculated numerically for a wide range of compressive pre-loads and applied voltages. Snap-through instabilities are observed, with the critical snap-through voltage decreasing with increasing compressive pre-load. The dynamic response of the membrane is then investigated under forced harmonic excitation. Frequency response plots characterizing the steady-state vibration reveal primary, subharmonic, and superharmonic resonances. Near these resonances, two stable vibration states are possible, corresponding to upper and lower branches in the frequency response. Significant and practically meaningful differences in the dynamic response are observed when the system vibrates at a fixed frequency about the upper and lower branches, a feature not discussed in previous research.


2018 ◽  
Vol 148 ◽  
pp. 10004
Author(s):  
Michał Marszal ◽  
Andrzej Stefański

Synchronization is a well known phenomenon in non-linear dynamics and is treated as correlation in time of at least two different processes. In scope of this article, we focus on complete and cluster synchronization in the systems of coupled dry friction oscillators, coupled by linear springs. The building block of the system is the classic stick-slip oscillator, which consists of mass, spring and belt-mass friction interface. The Stribeck friction itself is modelled using Stribeck friction model with exponential non-linearity. The oscillators in the systems are connected in nearest neighbour fashion, both in open and closed ring topology. We perform a numerical study of the properties of the dynamics of the systems in question, in two-parameter space (coupling coefficient vs. angular excitation frequency) and explore the possible configurations of cluster synchronization.


Author(s):  
Roman Bogacz ◽  
Boguslaw Ryczek

Abstract The paper deals with investigation of a self-excited vibrating system with dry friction. The system is composed of a mass connected by viscoelastic element with the referring frame and interacting with a moving belt by means of dry friction. An experimentally identified, multi-parametric dry friction model for the pair composed of soft and hard elements like steel-polyester pair, describing both the case of stick-slip and quasi-harmonic vibration, has been applied. Additionally, the system is influenced by external, two-frequency kinematic excitation. The results of computer simulation for different excitation conditions is submitted in the present paper.


Author(s):  
Chaofeng Li ◽  
Zengchuang Shen ◽  
Zilin Chen ◽  
Houxin She

The vibration dissipation mechanism of the rotating blade with a dovetail joint is studied in this paper. Dry friction damping plays an indispensable role in the direction of vibration reduction. The vibration level is reduced by consuming the total energy of the turbine blade with the dry friction device on the blade-root in the paper. The mechanism of the vibration reduction is revealed by the variation of the friction force and the energy dissipation ratio of dry friction. In this paper, the flexible blade with a dovetail interface feature is discretized by using the spatial beam element based on the finite element theory. Then the classical Coulomb-spring friction model is introduced to obtain the dry friction model on the contact interfaces of the tenon-mortise structure. What is more, the effects of the system parameters (such as the rotating speed, the friction coefficient, the installation angle of the tenon) and the excitation level on blade damping characteristics are discussed, respectively. The results show that the variation of the system parameters leads to a significant change of damping characteristics of the blade. The variation of the tangential stiffness and the position of the external excitation will affect the nonlinear characteristics and vibration damping characteristics.


Meccanica ◽  
2021 ◽  
Author(s):  
Gábor Csernák ◽  
Gábor Licskó

AbstractThe responses of a simple harmonically excited dry friction oscillator are analysed in the case when the coefficients of static and kinetic coefficients of friction are different. One- and two-parameter bifurcation curves are determined at suitable parameters by continuation method and the largest Lyapunov exponents of the obtained solutions are estimated. It is shown that chaotic solutions can occur in broad parameter domains—even at realistic friction parameters—that are tightly enclosed by well-defined two-parameter bifurcation curves. The performed analysis also reveals that chaotic trajectories are bifurcating from special asymmetric solutions. To check the robustness of the qualitative results, characteristic bifurcation branches of two slightly modified oscillators are also determined: one with a higher harmonic in the excitation, and another one where Coulomb friction is exchanged by a corresponding LuGre friction model. The qualitative agreement of the diagrams supports the validity of the results.


2021 ◽  
Vol 42 (5) ◽  
pp. 641-648
Author(s):  
Shichao Ma ◽  
Xin Ning ◽  
Liang Wang ◽  
Wantao Jia ◽  
Wei Xu

AbstractIt is well-known that practical vibro-impact systems are often influenced by random perturbations and external excitation forces, making it challenging to carry out the research of this category of complex systems with non-smooth characteristics. To address this problem, by adequately utilizing the stochastic response analysis approach and performing the stochastic response for the considered non-smooth system with the external excitation force and white noise excitation, a modified conducting process has proposed. Taking the multiple nonlinear parameters, the non-smooth parameters, and the external excitation frequency into consideration, the steady-state stochastic P-bifurcation phenomena of an elastic impact oscillator are discussed. It can be found that the system parameters can make the system stability topology change. The effectiveness of the proposed method is verified and demonstrated by the Monte Carlo (MC) simulation. Consequently, the conclusions show that the process can be applied to stochastic non-autonomous and non-smooth systems.


2016 ◽  
Vol 693 ◽  
pp. 318-323 ◽  
Author(s):  
Xin Liao ◽  
Jian Run Zhang

The interface of bolted joint commonly focuses on the research of non-linear damping and stiffness, which affect structural response. In the article, the non-linear damping model of bolted-joint interface is built, consisting of viscous damping and Coulomb friction. Energy balancing method is developed to identify the dry-friction parameter and viscous damping factor. The corresponding estimation equations are acquired when the input is harmonic excitation. Then, the vibration experiments with different bolted preloads are conducted, from which amplitudes in various input levels are used to work out the interface parameters. Also, the fitting curves of dry-friction parameters are also obtained. Finally, the results illustrate that the most interface of bolted joint in lower excitation levels occurs stick-slip motion, and the feasibility of the identification approach is demonstrated.


2011 ◽  
Vol 66-68 ◽  
pp. 933-936
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction was built firstly, the numerical method was taken to study the impacts of structure parameters on self-excited vibration. The calculation result shows that the variation of stiffness can change the vibration amplitude and frequency of the self-excited vibration, but can not eliminate it, Along with the increase of system damping the self-excite vibration has the weakened trend and there a ritical damping, when damping is greater than it the self-excite vibration will be disappeared.


Sign in / Sign up

Export Citation Format

Share Document