scholarly journals Novel polymorphic microsatellite markers from turmeric, Curcuma longa L. (Zingiberaceae)

2013 ◽  
Vol 72 (2) ◽  
pp. 407-412 ◽  
Author(s):  
Siju Senan ◽  
Dhanya Kizhakayil ◽  
Thotten E. Sheeja ◽  
Bhaskaran Sasikumar ◽  
Alangar I. Bhat ◽  
...  

Abstract - Twenty one polymorphic microsatellite loci were isolated and characterized from turmeric (Curcuma longa L.). These markers were screened across thirty accessions. The number of alleles observed for each locus ranged from two to eight with an average of 4.7 alleles per locus. The discrimination power of these markers ranged from 0.25 to 0.67 (average 0.6). The simple sequence repeat (SSR) markers can complement the currently available SSR markers and would be useful for the genetic analysis of turmeric accessions.

BMC Genetics ◽  
2011 ◽  
Vol 12 (1) ◽  
pp. 41 ◽  
Author(s):  
Robertha AV Garcia ◽  
Priscila N Rangel ◽  
Claudio Brondani ◽  
Wellington S Martins ◽  
Leonardo C Melo ◽  
...  

2014 ◽  
Vol 6 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Siju SENAN ◽  
Dhanya KIZHAKAYIL ◽  
Bhaskaran SASIKUMAR ◽  
Thotten Elampilay SHEEJA

Microsatellite or Simple Sequence Repeat (SSR) markers have evolved to the status of a most versatile and popular genetic marker in a ubiquity of plant systems. Due to their co-dominant, hyper-variable and multiallelic nature, they are the prominent markers of choice for fingerprinting, conservation genetics, plant breeding and phylogenetic studies. Despite its development of a new set of SSR markers for a species remained time consuming and expensive for many years. However, with the recent advancement in genomics, new strategies/protocols are now available for the generation of SSR markers. This review presents an overview on microsatellite markers with a special emphasis on the various strategies used for the development of microsatellite markers


2004 ◽  
Vol 129 (2) ◽  
pp. 204-210 ◽  
Author(s):  
Riaz Ahmad ◽  
Dan Potter ◽  
Stephen M. Southwick

Simple sequence repeat (SSR) and sequence related amplified polymorphism (SRAP) molecular markers were evaluated for detecting intraspecific variation in 38 commercially important peach and nectarine (Prunus persica) cultivars. Out of the 20 SSR primer pairs 17 were previously developed in sweet cherry and three in peach. The number of putative alleles revealed by SSR primer pairs ranged from one to five showing a low level of genetic variability among these cultivars. The average number of alleles per locus was 2.2. About 76% of cherry primers produced amplification products in peach and nectarine, showing a congeneric relationship within Prunus species. Only nine cultivars out of the 38 cultivars could be uniquely identified by the SSR markers. For SRAP, the number of fragments produced was highly variable, ranging from 10 to 33 with an average of 21.8 per primer combination. Ten primer combinations resulted in 49 polymorphic fragments in this closely related set of peaches and nectarines. Thirty out of the 38 peach and nectarine cultivars were identified by unique SRAP fingerprints. UPGMA Cluster analysis based on the SSR and SRAP polymorphic fragments was performed; the relationships inferred are discussed with reference to the pomological characteristics and pedigree of these cultivars. The results indicated that SSR and SRAP markers can be used to distinguish the genetically very close peach and nectarine cultivars as a complement to traditional pomological studies. However, for fingerprinting, SRAP markers appear to be much more effective, quicker and less expensive to develop than are SSR markers.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 471
Author(s):  
Jae-Ryoung Park ◽  
Won-Tae Yang ◽  
Yong-Sham Kwon ◽  
Hyeon-Nam Kim ◽  
Kyung-Min Kim ◽  
...  

The assessment of the genetic diversity within germplasm collections can be accomplished using simple sequence repeat (SSR) markers and association mapping techniques. The present study was conducted to evaluate the genetic diversity of a colored rice germplasm collection containing 376 black-purple rice samples and 172 red pericarp samples, conserved by Dong-A University. There were 600 pairs of SSR primers screened against 11 rice varieties. Sixteen informative primer pairs were selected, having high polymorphism information content (PIC) values, which were then used to assess the genetic diversity within the collection. A total of 409 polymorphic amplified fragments were obtained using the 16 SSR markers. The number of alleles per locus ranged from 11 to 47, with an average of 25.6. The average PIC value was 0.913, ranging from 0.855 to 0.964. Four hundred and nine SSR loci were used to calculate Jaccard’s distance coefficients, using the unweighted pair-group method with arithmetic mean cluster analysis. These accessions were separated into several distinctive groups corresponding to their morphology. The results provided valuable information for the colored rice breeding program and showed the importance of protecting germplasm resources and the molecular markers that can be derived from them.


2016 ◽  
Vol 106 (4) ◽  
pp. 362-371 ◽  
Author(s):  
P. Cheng ◽  
X. M. Chen ◽  
D. R. See

Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals.


Sign in / Sign up

Export Citation Format

Share Document