scholarly journals Antibacterial, cytotoxic and trypanocidal activities of marine-derived fungi isolated from Philippine macroalgae and seagrasses

2018 ◽  
Vol 77 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Kin Israel Notarte ◽  
Takashi Yaguchi ◽  
Keisuke Suganuma ◽  
Thomas Edison dela Cruz

AbstractThe occurrence and bioactivities of marine-derived fungi are evaluated in this paper. A total of 16 morphospecies of marine-derived fungi (MDF) were isolated from four host macroalgae and two seagrasses and identified as belonging to the generaAspergillus,Fusarium,Paecilomyces,Penicillium,Sclerotinia,ThamnidiumandTrichoderma, including fivemycelia sterilia.Among these host organisms, the rhodophyteLaurencia intermediaharboured the highest number of isolated MDF. Selected MDF were then assayed and showed to inhibitPseudomonas aeruginosa(8-19 mm zone of inhibition) andStaphylococcus aureus(6-19 mm zone of inhibition), and were cytotoxic against the brine shrimpArtemia salinanauplii (LD50: 201.56-948.37 μg mL−1). The screening led to the selection of five of the most bioactive morphospecies, all belonging to the genusAspergillus. These marine aspergilli were subjected toβ-tubulingene sequence analysis for species identification, and to mass production in different culture media with or without marine salts, and screening of the crude culture extracts for their cytotoxic and trypanocidal activities.Aspergillus tubingensiscultivated in potato dextrose broth with marine salt proved to be the most cytotoxic against P388 (IC50: 1028 ng mL−1) and HeLa (IC50: 1301 ng mL−1) cancer cells. On the other hand,A. fumigatuscultivated in malt extract broth without marine salt was shown to be the most potent againstTrypanosoma congolense(IC50: 298.18 ng mL−1). Our study therefore showed that salinity may influence the bioactivities of some species of MDF.

Plant Disease ◽  
2016 ◽  
Vol 100 (11) ◽  
pp. 2294-2298 ◽  
Author(s):  
J. R. Standish ◽  
H. F. Avenot ◽  
T. B. Brenneman ◽  
K. L. Stevenson

Pecan scab, caused by Fusicladium effusum, is most effectively managed using multiple fungicide applications, including quinone outside inhibitors (QoIs). However, QoIs have a high risk for resistance developing in phytopathogenic fungi. QoI resistance is generally associated with amino-acid substitutions at positions 129, 137, and 143 of the cytochrome b (cytb) gene. A substitution at position 143 confers complete resistance, while an intron immediately downstream of this position prevents the substitution. The objective of this study was to assess the risk of QoI resistance by characterizing a partial fragment of the F. effusum cytb gene. Sequence analysis of the 1,919-bp fragment revealed the presence of a 1,407-bp intron immediately downstream of position 143. This intron was identified in 125 isolates collected from 16 counties across the state of Georgia. No substitutions were identified at positions 129 or 143 but, in seven of the isolates, glycine was replaced with serine at position 137. The ubiquitous nature of the detected intron provided strong evidence that the G143A substitution may not occur in F. effusum isolates, although resistance could still develop through intron loss events or the selection of intron-lacking genotypes, or as the result of other mutations in the cytb gene.


2020 ◽  
Vol 9 (10) ◽  
pp. e7809109080
Author(s):  
Paula Francislaine Moura ◽  
Celso Garcia Auer ◽  
Katlin Suellen Rech ◽  
Camila Freitas de Oliveira ◽  
Cristiane da Silva Paula de Oliveira ◽  
...  

Fungi are organisms capable of synthesizing metabolites of industrial interest and the standardization of biomass production for the extraction of these compounds has biotechnological applications. The objective of this work was to optimize the in vitro cultivation process for fungi isolated from Pinus sp., standardizing the best conditions for the production of biomass, contributing to its large scale production. Therefore, the conditions of in vitro cultivation of the fungi Botrytis cinerea, Rhizoctonia sp. and Suillus sp., were evaluated based on the maximum production of dry biomass (PBS), varying temperature, medium and cultivation time. The fungi were grown in glass flasks with liquid culture media, in a BOD chamber, without mechanical stirring. Potato-dextrose broth - PD broth (PD), Czapek - CZ broth (CZ) and Malt Extract - EM broth (EM) were evaluated at temperatures ranging from 8 to 32 ºC and incubation times from 7 to 35 days. PD broth showed better results for fungi B.cinerea and Rhizoctonia sp., when compared to CZ and EM broths, in PBS, while Suillus sp. showed better development in EM broth. The best growth temperature based on PBS was 12 ºC and 16 ºC, with 28 and 35 days of cultivation.


2009 ◽  
Vol 75 (10) ◽  
pp. 3348-3351 ◽  
Author(s):  
Jill Tomaras ◽  
Jason W. Sahl ◽  
Robert L. Siegrist ◽  
John R. Spear

ABSTRACT Microbial diversity of septic tank effluent (STE) and the biomat that is formed as a result of STE infiltration on soil were characterized by 16S rRNA gene sequence analysis. Results indicate that microbial communities are different within control soil, STE, and the biomat and that microbes found in STE are not found in the biomat. The development of a stable soil biomat appears to provide the best on-site water treatment or protection for subsequent groundwater interactions of STE.


2006 ◽  
Vol 56 (5) ◽  
pp. 1085-1088 ◽  
Author(s):  
Soon Dong Lee

A novel actinomycete, strain N3-7T, was isolated from a natural cave in Jeju, Republic of Korea, using a dilution method and was subjected to characterization using polyphasic taxonomy. A 16S rRNA gene sequence analysis revealed that the organism belonged to the phylogenetic cluster of the genus Actinocorallia and was most closely related to Actinocorallia glomerata and Actinocorallia longicatena (97.6 and 97.5 % similarity, respectively). The main chemotaxonomic properties of strain N3-7T, such as the principal amino acid of the peptidoglycan, the predominant menaquinone and the polar lipid profile, supported classification in the genus Actinocorallia. The organism was readily differentiated from Actinocorallia species with validly published names on the basis of a broad range of phenotypic properties. Thus the isolate represents a novel species of the genus Actinocorallia, for which the name Actinocorallia cavernae sp. nov. is proposed. The type strain is strain N3-7T (=JCM 13278T=NRRL B-24429T).


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


Sign in / Sign up

Export Citation Format

Share Document