scholarly journals On the Eccentrically Loaded Socket Footings With Cut - Off Pyramid Shaped Socket

2019 ◽  
Vol 15 (1) ◽  
pp. 58-69
Author(s):  
Maciej Major ◽  
Izabela Major ◽  
Daniela Kuchárová ◽  
Krzysztof Kuliński

AbstractIn this work considerations concerning eccentrically loaded socket footing with cut-off pyramid shaped socket were presented. As an object of study sloped footing with 1.40 m height, corresponding to the maximum frost depth has been adopted. Knowing that in practice there are no perfect pure axial loads, load applied on the eccentricity has been taken into considerations. Eccentric loads result in footing rotation in the direction of eccentricity and acting load, hence one footing end is imbedding into the ground, whereas second end tries to rise up. To observe that phenomenon, elastic type of support under the foundation was introduced corresponding to the naturally humid sand with medium compaction. Presented in this paper considerations of innovative connection technology between footing and column were based on performed numerical studies. Advantages and disadvantages of presented footing in comparison to normal socket footings solutions were widely discussed. Numerical analyses were performed with the utilization Finite Element Method based SolidWorks software.

2012 ◽  
Vol 188 ◽  
pp. 1-5
Author(s):  
Lei Guo ◽  
Yong He ◽  
Xian Feng Zhang ◽  
Nian Song Zhang ◽  
Chun Xu Pang

A review on the numerical studies about KE(kinetic energy) penetrator into concrete target with mass loss is presented. There are two main ways to study the mass loss in numerical simulation: finite-element method and abrasion iterative algorithm. For each method, detailed introduction is given at home and abroad. A summary of their research, including their advantages and disadvantages, is described. Finally, some research proposals are given for further study.


2013 ◽  
Vol 712-715 ◽  
pp. 1027-1031
Author(s):  
Zhen Yu Liu ◽  
Ping Ping Zhang ◽  
Hu Zhen Wang ◽  
Xiang Rong Zhu

Aimed at deflection fracturing by oriented perforation, a two-dimensional, non-steady and two-phase Finite Element Method (FEM) is established. Taking a battery of wells in the inverted nine-spot rhombus pattern as object of study, it is reported that law of different crack initiation angle (CIA) affecting deflection fracturing. In the respect of daily oil production and cumulative oil production, the dual fracture with different CIA is more than straight fracture. So it is feasible to use deflection fracturing of oriented perforation to increase the production of the special low permeability oilfield. In contrast to dual fractures with different fracturing initiation angles, we can see that the wider CIA, the higher cumulative oil production. So we can draw such a conclusion that when deflection fracturing is implemented, angle should be increased if the working condition is permitted so as to increase the production of oil well.


1999 ◽  
Vol 10 (02n03) ◽  
pp. 485-500
Author(s):  
R. BARBERI ◽  
M. IOVANE ◽  
C. FERRERO ◽  
V. MOCELLA

This paper is devoted to numerical studies of two-dimensional problems concerning surface properties of nematic liquid crystals. We use a finite element method, based essentially on the classic variational approach, to find an approximate solution minimizing the Gibbs free energy of the nematic material under given boundary conditions. Three examples illustrate the performance and versatility of this analysis. Two cases are related to the macroscopic orientation induced by periodic boundary conditions: the first is a saw-toothed substrate in the micrometric range and the second is a microtextured surface. We analyze the bulk planar–homeotropic transition conditions for both of them. In the third case, we study the coupling between the spatial variation of the nematic director and that of the order parameter in the presence of surface-induced distortion.


2020 ◽  
Vol 1 (46) ◽  
pp. 387-404
Author(s):  
Kharytonova L ◽  
◽  
Kutsenko O ◽  
Kadenko I ◽  
◽  
...  

The paper focuses on the one of the persperctive approaches to the increasing of thje safety of Nuclear Power Plants - Flaw Handbook Concept. Object of study - equipment and piping of Nuclear Power Plants. Purpose of study - the description of the Flaw Handbook Concept and the application of the concept for the specific example. Method of the study - numerical procedures of the finite-element method and fracture mechanics. In the modern economics the optimization of the performance and operation of industry and power systems is of the main importance. The Flaw Handbook Concept is considered in the paper. This concept is applied on the nuclear power plants in the leading states with the aim of the optimization of the procedures of in-service inspection and repair. The main steps of the concept are considered and applied for the specific example. An example of Flaw Handbook using is analysed. The results of the paper can be incorporated into the procedures of in-service inspection for the safety-significant equipment and piping. KEYWORDS: FLAW HANDBOOK, BRITTLE FRACTURE, FATIGUE, FINITE-ELEMENT METHOD, SURGE PIPE.


Author(s):  
Ivan Pidgurskyi ◽  
Vasyl Slobodian ◽  
Denys Bykiv ◽  
Mykola Pidgurskyi

This article is devoted to evaluating the effectiveness of I-beams with different web perforations: hexagonal, round, oval and elliptical. The technology of manufacturing of castellated beams is described. For the purpose of verification the analytical calculation of the beam with hexagonal web perforation and for comparison the calculation by the finite element method is given. To correctly assess the stress-strain state, the mesh of finite elements in the area of openings was concentrated. The results of maximum normal stresses and strains obtained by different methods were compared with each other and the efficiency of using the finite element method to determine the stress-strain state of castellated beams was proved. In the castellated beams there is a complex stress-strain state, which was confirmed in this work for the most characteristic shapes of openings. Beams with hexagonal, round, oval (horizontal and vertical), elliptical and elliptical (rotated by 45°) openings are considered in the article, their geometric parameters and characteristics as well as advantages and disadvantages are described. Beams with round openings are currently the most widely used. In addition, the parameters that affect the efficiency of castellated beams with oval (horizontal and vertical) and elliptical rotated by 45° openings were identified. In this work, it was found that the shape of the openings significantly affects the stress-strain state of the castellated beams, especially for hexagonal openings, which are mainly used so far. The stress distribution in the first opening for each of the considered types of perforations and the nature of the change of σmax in other openings is shown. The stress-strain state of castellated beams was studied using the finite element method. The results of this study are of practical value because they can be used when arranging the sections and openings of castellated beams.


2013 ◽  
Vol 10 (01) ◽  
pp. 1340011 ◽  
Author(s):  
XU XU ◽  
YUANTONG GU ◽  
GUIRONG LIU

In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid mechanics problems by combining techniques of finite element method (FEM) and node-based smoothed finite element method (NS-FEM) using a triangular mesh. A parameter α is equipped into H-SFEM, and the strain field is further assumed to be the weighted average between compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM solution and the NS-FEM solution, which guarantees the convergence of H-SFEM. Intensive numerical studies are conducted to verify these theoretical results and show that (1) the upper- and lower-bound solutions can always be obtained by adjusting α; (2) there exists a preferable α at which the H-SFEM can produce the ultrasonic accurate solution.


Sign in / Sign up

Export Citation Format

Share Document