scholarly journals Chiral-Gas Chromatograpy-Selected Ion Monitoring-Mass Selective Detection Analysis of Secondary Alkaloids in Tobacco and Tobacco Smoke

Author(s):  
TA Perfetti ◽  
WM Coleman

AbstractChiral gas chromatography-mass selective detection has been successfully employed in the analysis of secondary alkaloids in selected tobacco materials and cigarette smoke condensate. No extensive sample preparation is involved. A lower detection limit of ~2 % d-nornicotine, d-anabasine and d-anatabine in a mixture of l and d-isomers was achieved. The levels and the enantiomeric ratios of nicotine, nornicotine, anabasine and anatabine varied in different tobacco types. The enantiomeric ratios of nicotine, anabasine and anatabine in mainstream cigarette condensate also varied but were generally representative of the enantiomeric ratios for the alkaloids found in the leaf. The enantiomeric ratio for nornicotine in mainstream cigarette condensate also varied and was not representative of the enantiomeric ratios for the alkaloids found in the leaf. Preferential decomposition or racemization may account for the differences seen in the yields of isomers of nornicotine transferred to the mainstream smoke condensate. An experiment was conducted to determine if the d-nornicotine present in tobacco contributed to the yield of d-nicotine in mainstream smoke condensate. The results of that experiment indicated that the yield of d-nicotine transferred to mainstream smoke did not change significantly when either large levels of endogenous nornicotine were present in the leaf or when large levels of exogenous levels of d-, l-nornicotine were applied to the tobacco rod prior to smoking. The limiting factor in the production of d-nicotine in mainstream cigarette smoke condensate may be the concentration of methyl radicals present to react. Further work must be conducted to unravel the mechanism involved in the production of d-nicotine in cigarette smoke condensate.

Author(s):  
TA Perfetti ◽  
BM Gordon ◽  
WM Coleman III ◽  
WT Morgan

AbstractExperiments were conducted to independently determine the mainstream smoke transfer efficiency of d-nicotine and l-nicotine. Two types of cigarettes (University of Kentucky 2R1 reference cigarette and a cigarette prepared from reconstituted sheet material, TS1) were employed in the study. A chiral-gas chromatography-selected ion monitoring-mass selective detection analysis was used to separate and determine d- and l-nicotine. The two types of cigarettes were injected with varying levels of d- or l-nicotine (0-20 mg). The tobacco was removed from the nicotine-injected cigarettes and analyzed for total nicotine and d- and l-nicotine. The cigarettes were smoked under FTC (Federal Trade Commission) conditions, and the Cambridge pad extracts were analyzed for total nicotine and d- and l-nicotine. The total nicotine transfer efficiency and the transfer efficiencies of d- and l-nicotine were determined. Nicotine transfer efficiency is dependent on the type of tobacco employed in a blend and the configuration of the cigarette. As a result, the total nicotine transfer efficiency for the 2R1 cigarettes was different than for the TS1 cigarettes. Likewise, the independently measured transfer efficiencies for d- and l-nicotine were different between the two cigarettes. The transfer efficiencies of d- and l-nicotine were not found to be different within a cigarette type. The average transfer efficiency for d-nicotine in a 2R1 cigarette was determined to be 19.25%. The average transfer efficiency for l-nicotine in a 2R1 cigarette was 16.05%. The average transfer efficiency for d-nicotine in a TS1 cigarette was 10.15% and 10.65% for l-nicotine. These differences between d- and l-nicotine were determined not to be statistically significant and are of no practical consequence.


Author(s):  
TA Perfetti ◽  
WM Coleman

AbstractA novel method for the detection, separation, and quantification of the optical isomers of nicotine has been developed. The method has been applied to analyse extracts of tobacco seeds, processed tobacco suspensions, reconstituted tobacco sheet materials, individual tobacco varieties, blends of tobaccos, and cigarette smoke condensate. The methodology does not involve any further sample preparation other than that which is normally used to analyse tobacco alkaloids by the modified method of Gordon et al. (73), or the standard FTC smoke analysis routinely performed by most tobacco and smoke analysis laboratories. Near baseline resolution was obtained for enantiomers, yielding a lower detection limit of approximately 2 % d-nicotine in a mixture of d-and l-nicotine. There was essentially no d-nicotine found in any of the tobacco samples. Detectable levels of d-nicotine were found in most of the samples of cigarette smoke condensate when the cigarettes were smoke by the FTC method. The presence of Oriental tobacco in the cigarette appeared to be related to whether d-nicotine was generated in the mainstream cigarette smoke condensate. When the same cigarettes were smoked under a more stressful puffing regime the level of d-nicotine in the smoke did not increase and in some cases the level of d-nicotine decreased. This work supports prior literature that detected and quantified the presence of d-nicotine in cigarette smoke condensate.


Author(s):  
AR Gerardi ◽  
WM Coleman

AbstractSeveral approaches were explored to develop a high throughput procedure for relative determination of 14 different carbon-centered free radicals, both acyl and alkylaminocarbonyl type, in cigarette smoke. Two trapping procedures using 3-cyano-2,2,5,5-tetramethyl-1-pyrrolidinyloxy, or 3-cyanoproxyl radical (3-CNP) were designed for this study: a) trapping in solution and b) trapping on a solid support which was a Cambridge filter pad. Fresh whole smoke and vapor phase smoke from mainstream cigarette smoke from Kentucky Reference Cigarettes 2R4F, as partitioned via an unadulterated Cambridge filter pad, were transferred into each trapping system in separate experiments. The 3-CNP coated Cambridge filter pad approach was shown to be superior to the impinger procedure as described in this study. Gas chromatography coupled with mass selective detection (GC-MS) was employed for the first time as an alternate means of detecting several relatively highly concentrated radical adducts. Liquid chromatography tandem mass spectrometry (LC-MS/MS) with precursor ion monitoring and selected ion monitoring (SIM) was used for detecting the large array of radicals, including several not previously reported: formyl, crotonyl, acrolein, aminocarbonyl, and anilinocarbonyl radicals. Relative quantitation was achieved using as external calibration standards of 4-(1-pyrrolidino)benzaldehyde and nicotine. It was determined that the yield of carbon-centered free radicals by reference cigarette 2R4F was approximately 265 nmoles/cigarette at 35 mL puff/60 sec interval/2 sec duration smoking conditions.


Author(s):  
S Liu ◽  
LT Taylor ◽  
MF Borgerding ◽  
WM Coleman ◽  
BR Bombick

AbstractAmong the more than 5000 chemicals reported in cigarette smoke condensate (CSC), heterocyclic aromatic amines (HAAs) are considered to be a contributor to observed biological activity. HAAs are non-volatile and are reported at ppb levels in CSC. A new method for HAA analysis at the trace level is reported here. N, O-Bis(trimethylsilyl) trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane was employed to derivatize amino groups by heating the reagent containing a sample of CSC at 80 °C for 30 min followed by analysis employing gas chromatography-mass spectroscopy (GC-MS) in the selected-ion-monitoring (SIM) mode. This derivatization method afforded symmetrical peak shapes on a ZB-50 stationary phase and achieved instrumental limits of quantification (LOQ) at 10:1 S/N from -1 ng/mL for AαC to120 ng/mL for Glu-P-1. The chemical identity of each derivative was confirmed by comparison of retention time and mass spectra of standards. The latter were characterized by the following ions: M·+ or [M-1]+, [M-15]+, and m/z 73 (i.e., trimethylsilyl). CSC and its base sub-fractions were studied using the GC-MS method. Ten HAAs were screened and five were quantified in cigarette smoke condensate, while 2-5 HAAs were quantified in each of three base sub-fractions. Values obtained with the new procedure agree well with values reported in the literature and with results obtained from a commercial laboratory via a different analytical method. The potential contribution of each HAA to the overall mutagenic activity observed for CSC and its base fractions is discussed. When considered together, HAAs account for only a small portion (-7.8%) of the observed mutagenicity of the CSC.


Author(s):  
M. E. Snook ◽  
R. F. Severson ◽  
R. F. Arrendale ◽  
H. C. Higman ◽  
O. T. Chortyk

AbstractThe methyl, multi-methyl, and ethyl derivatives of the polynuclear aromatic hydrocarbons (PAH) of cigarette smoke condensate (CSC) were isolated from the neutrals by silicic acid chromatography, solvent partitioning and gel chromatography. The procedure yielded a relatively pure PAH isolate amenable to further identifications. The multi-alkylated PAH were concentrated in the early gel fractions with parent and higher ring PAH found in subsequent gel fractions. It was shown that CSC is very rich in alkylated PAH, and their successful identification required extensive use of gas and liquid chromatography and ultra-violet and GC - mass spectrometric techniques. High-pressure liquid chromatography (HPLC) separated individual isomers of the alkylated PAH in complex GC peaks. PAH from indene to pentamethylchrysene were found. This report concludes our identification studies on the PAH of CSC and complements our two previous reports in this journal. Collectively, our studies have identified approximately 1000 PAH of cigarette smoke condensate and have led to the development of methods for the routine quantitation of PAH in smalI quantities of cigarette smoke condensate.


2021 ◽  
Vol 30 (3) ◽  
pp. 109-126
Author(s):  
Laurent Poget ◽  
Catherine Goujon ◽  
Samuel Kleinhans ◽  
Serge Maeder ◽  
Jean-Pierre Schaller

Summary In order to assess robustness for the reduction of harmful and potentially harmful constituent (HPHC) levels generated by the Tobacco Heating System 2.2 (THS 2.2), a heated tobacco product, we compared the aerosol of this product with mainstream smoke from the 3R4F reference cigarette under different conditions of temperature and humidity. The desired climatic conditions were achieved by using an air-conditioning system coupled with the smoking-machine housing. Two extreme climatic conditions were selected, representing a “Hot and Dry” climate (30 °C and 35% relative humidity RH) and a “Hot and Very Humid” climate (30 °C and 75% RH). In addition, aerosol and smoke were generated using the standard conditions recognized for smoking-machine analyses of tobacco products (22 °C and 60% RH), which were close to the climatic conditions defined for “Subtropical and Mediterranean” environments (25 °C and 60% RH). The experimental conditions were chosen to simulate the use of THS 2.2 and cigarettes under extreme conditions of temperature and humidity. HeatSticks and cigarettes taken from freshly opened packs were subjected to short-term conditioning from two to a few more days under the same experimental conditions. We analyzed 54 HPHCs in THS 2.2 aerosol and 3R4F cigarette smoke, generated in accordance with the Health Canada Intense (HCI) standard, using modified temperature and humidity conditions for sample conditioning and machine-smoking experiments. We used a volume-adjusted approach for comparing HPHC reductions across the different climatic conditions investigated. Although a single puffing regimen was used, the total puff volume recorded for the 3R4F cigarette smoke varied due to the influence of temperature and humidity on combustion rate, which justified the use of a volume-adjusted approach. Volume-adjusted yields were derived from HPHC yields expressed in mass-per-tobacco stick normalized per total puff volume. The results indicated that, regardless of the considered climatic conditions, the HPHC levels investigated in THS 2.2 aerosol were reduced by at least 90%, on average, when compared with the concentrations in 3R4F cigarette mainstream smoke. This confirmed the robustness in performance for THS 2.2 to deliver reduced levels of HPHCs under the extreme climatic conditions investigated in this study. In order to further characterize the robustness of these reductions, the lowest reduction performance achieved for individual HPHCs across all climatic conditions was used to define the threshold for a robust reduction. The majority of the 54 HPHCs investigated in THS 2.2 aerosol showed more than 90% reduction. Calculations derived from nicotine-adjusted yields also confirmed robust reductions for all investigated HPHCs. The small differences in absolute reduction between the volume- and nicotine-adjusted approaches were predominantly attributed to a combination of the differences in both nominal nicotine deliveries and total puff volumes between THS 2.2 and 3R4F cigarettes; however, this did not influence the determination of robustness. Our findings confirm the value of this approach for assessing the robustness of a product’s performance under different climatic conditions.


2015 ◽  
Vol 87 (2) ◽  
pp. 997-1005 ◽  
Author(s):  
Jinqiang Hu ◽  
Tao Wei ◽  
Siwen Sun ◽  
Aijing Zhao ◽  
Chunping Xu

The aim of the study was to investigate the effect of cigarette smoke on the production and characterization of exopolysaccharides (EPSs) produced by Bifidobacterium. Cigarettes of Shanhua brand (nicotine: 1.1 mg, tar: 11 mg) were utilized to prepare a cigarette smoke condensate (CSC). The standard strain of Bifidobacterium animalis was cultured in MRS media under anaerobic addition of CSC. The results showed that CSC significantly decreased the growth of B. animalis as well as EPSs and acetic acid production. Furthermore, two EPSs fractions (Fr-I and Fr-II) were isolated and purified for chemical and molecular determination. By comparison with control, CSC was found to be of great impact on EPSs carbohydrate composition. The molecular weight mass of Fr-I changed from 3.33×105 g/mol (without CSC) to 2.99×105 (with CSC). In conclusion, in vitro studies revealed that CSC was directly able to affect the production of metabolites for B. animalis, which could be an essential factor in certain pathological disorders.


Sign in / Sign up

Export Citation Format

Share Document