scholarly journals Optimization Model for Multimodal Transportation Networks Based on Supply Chain

2012 ◽  
Vol 4 (2) ◽  
pp. 77-96 ◽  
Author(s):  
Paweł Sitek ◽  
Jarosław Wikarek

Abstract The article presents the problem of supply chain optimization from the perspective of a multimodal logistics provider and includes a mathematical model of multilevel cost optimization in the form of MILP (Mixed Integer Linear Programming). The costs of production, transport, distribution and environmental protection were adopted as optimization criteria. Timing, volume, capacity and mode of transport were also taken into account. The model was implemented in the LINGO ver.12. The numerical experiments were carried out using sample data to show the possibilities of practical decision support and supply chain optimization.

2021 ◽  
Vol 11 (2) ◽  
pp. 178-193
Author(s):  
Juliana Emidio ◽  
Rafael Lima ◽  
Camila Leal ◽  
Grasiele Madrona

PurposeThe dairy industry needs to make important decisions regarding its supply chain. In a context with many available suppliers, deciding which of them will be part of the supply chain and deciding when to buy raw milk is key to the supply chain performance. This study aims to propose a mathematical model to support milk supply decisions. In addition to determining which producers should be chosen as suppliers, the model decides on a milk pickup schedule over a planning horizon. The model addresses production decisions, inventory, setup and the use of by-products generated in the raw milk processing.Design/methodology/approachThe model was formulated using mixed integer linear programming, tested with randomly generated instances of various sizes and solved using the Gurobi Solver. Instances were generated using parameters obtained from a company that manufactures dairy products to test the model in a more realistic scenario.FindingsThe results show that the proposed model can be solved with real-world sized instances in short computational times and yielding high quality results. Hence, companies can adopt this model to reduce transportation, production and inventory costs by supporting decision making throughout their supply chains.Originality/valueThe novelty of the proposed model stems from the ability to integrate milk pickup and production planning of dairy products, thus being more comprehensive than the models currently available in the literature. Additionally, the model also considers by-products, which can be used as inputs for other products.


2021 ◽  
Author(s):  
Fatemeh Mohebalizadehgashti

Traditional logistics management has not focused on environmental concerns when designing and optimizing food supply chain networks. However, the protection of the environment is one of the main factors that should be considered based on environmental protection regulations of countries. In this thesis, environmental concerns with a mathematical model are investigated to design and configure a multi-period, multi-product, multi-echelon green meat supply chain network. A multi-objective mixed-integer linear programming formulation is developed to optimize three objectives simultaneously: minimization of the total cost, minimization of the total CO2 emissions released from transportation, and maximization of the total capacity utilization. To demonstrate the efficiency of the proposed optimization model, a green meat supply chain network for Southern Ontario, Canada is designed. A solution approach based on augmented εε-constraint method is developed for solving the proposed model. As a result, a set of Pareto-optimal solutions is obtained. Finally, the impacts of uncertainty on the proposed model are investigated using several decision trees. Optimization of a food supply chain, particularly a meat supply chain, based on multiple objectives under uncertainty using decision trees is a new approach in the literature. Keywords: Meat supply chain; Decision tree; Multi-objective programming; Mixed-integer linear programming; Augmented εε-constraint.


2020 ◽  
Vol 18 (4) ◽  
Author(s):  
Reza Babazadeh ◽  
Ali Sabbaghnia ◽  
Fatemeh Shafipour

: Blood and its products play an undeniable role in human life. In recent years, although both academics and practitioners have investigated blood-related problems, further enhancement is still warranted. In this study, a mixed-integer linear programming model was proposed for local blood supply chain management. A supply network, including temporary and fixed blood donation facilities, blood banks, and blood processing centers, was designed regarding the deteriorating nature of blood. The proposed model was applied in a real case in Urmia, Iran. The numerical results and sensitivity analysis of the key model parameters ensured the applicability of the proposed model.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Sema Akin Bas ◽  
Beyza Ahlatcioglu Ozkok

By the green point of view, supply chain management (SCM), which contains supplier and location selection, production, distribution, and inventory decisions, is an important subject being examined in recent years by both practitioners and academicians. In this paper, the closed-loop supply chain (CLSC) network that can be mutually agreed by meeting at the level of common satisfaction of conflicting objectives is designed. We construct a multi-objective mixed-integer linear programming (MOMILP) model that allows decision-makers to more effectively manage firms’ closed-loop green supply chain (SC). An ecological perspective is brought by carrying out the recycling, remanufacturing and destruction to SCM in our proposed model. Maximize the rating of the regions in which they are located, minimize total cost and carbon footprint are considered as the objectives of the model. By constructing our model, the focus of customer satisfaction is met, as well as the production, location of facilities and order allocation are decided, and we also carry out the inventory control of warehouses. In our multi-product multi-component multi-time-period model, the solution is obtained with a fuzzy approach by using the min operator of Zimmermann. To illustrate the model, we provide a practical case study, and an optimal result containing a preferable level of satisfaction to the decision-maker is obtained.


2017 ◽  
Vol 26 (44) ◽  
pp. 21 ◽  
Author(s):  
John Willmer Escobar

This paper contemplates the supply chain design problem of a large-scale company by considering the maximization of the Net Present Value. In particular, the variability of the demand for each type of product at each customer zone has been estimated. As starting point, this paper considers an established supply chain for which the main problem is to determine the decisions regarding expansion of distribution centers. The problem is solved by using a mixed-integer linear programming model, which optimizes the different demand scenarios. The proposed methodology uses a scheme of optimization based on the generation of multiple demand scenarios of the supply network. The model is based on a real case taken from a multinational food company, which supplies to the Colombian and some international markets. The obtained results were compared with the equivalent present costs minimization scheme of the supply network, and showed the importance and efficiency of the proposed approach as an alternative for the supply chain design with stochastic parameters.


2013 ◽  
Vol 442 ◽  
pp. 443-449
Author(s):  
Xie Xie ◽  
Yan Ping Li ◽  
Yong Yue Zheng ◽  
Xiao Li Li

This paper focuses on a single crane scheduling problem which is motivated by cooled-rolling material warehouse in the iron and steel enterprise. As storage technological requirement, coils have been stored on the pre-specified position in two levels. If a demanded coil is in the upper level, it can be picked up directly. If a demanded coil in the lower level is blocked by un-demanded coils, the coil can not be transported until all the blocking coils are shuffled to another position. Our problem combines transportation and shuffling simultaneously for crane to pick up all demanded coils as early as possible to designated place (makespan). We first propose a mixed integer linear programming (MILP) model. Some analytical properties are further provided. Based on these properties, we propose a polynomial-time heuristic algorithm. Numerical experiments are carried out to confirm our proposed methods can provide high quality solutions.


Author(s):  
Hsin-Wei Hsu

The green supply chain management has drawn researchers’ attention in recent years, but most of the proposed models for green topics on the subject are case based, and for this reason, they lack generality. In this work, the design of a supply chain network is studied. In this chapter, we try to overcome this limitation and a generalized model is proposed, in which a logistics chain network problem is formulated into a 0-1 mixed integer linear programming model and the decisions for the function of manufactures, distribution centers, and dismantlers will be suggested with minimum cost. A numerical example is provided for illustration.


Sign in / Sign up

Export Citation Format

Share Document