scholarly journals Aerolaserskaneerimise kasutamine metsakorralduse alusena

2020 ◽  
Vol 73 (1) ◽  
pp. 136-144
Author(s):  
Tauri Arumäe ◽  
Mait Lang

Abstract In this summary, we give an overview of the application of airborne laser scanning (ALS) data for predicting the main forest inventory variables in Estonia. When Estonia being one of the few countries with wall-to-wall ALS availability, the need for applicable models for Estonian forests was imminent. Over the past decade, different studies have been carried out to develop models for standing wood volume, forest height, canopy cover, canopy base height, and methods for monitoring height growth and detect small-scale harvests. The main findings showed strong correlations for all the studied parameters and different methods utilizing low-density lidar data for practical forest inventory purposes. Options for using repea ted ALS measurements for continuous forest inventory are discussed.

2020 ◽  
Vol 12 (2) ◽  
pp. 247 ◽  
Author(s):  
Osian Roberts ◽  
Pete Bunting ◽  
Andy Hardy ◽  
Daniel McInerney

Airborne Laser Scanning (ALS) measurements are increasingly vital in forest management and national forest inventories. Despite the growing reliance on ALS data, comparatively little research has examined the sensitivity of ALS measurements to varying survey conditions over commercially important forests. This study investigated: (i) how accurately the Discrete Anisotropic Radiative Transfer (DART) model was able to replicate small-footprint ALS measurements collected over Irish conifer plantations, and (ii) how survey characteristics influenced the precision of discrete-return metrics. A variance-based global sensitivity analysis demonstrated that discrete-return height distributions were accurately and consistently simulated across 100 forest inventory plots with few perturbations induced by varying acquisition parameters or ground topography. In contrast, discrete return density, canopy cover and the proportion of multiple returns were sensitive to fluctuations in sensor altitude, scanning angle, pulse repetition frequency and pulse duration. Our findings corroborate previous studies indicating that discrete-return heights are robust to varying acquisition parameters and may be reliable predictors for the indirect retrieval of forest inventory measurements. However, canopy cover and density metrics are only comparable for ALS data collected under similar acquisition conditions, precluding their universal use across different ALS surveys. Our study demonstrates that DART is a robust model for simulating discrete-return measurements over structurally complex forests; however, the replication of foliage morphology, density and orientation are important considerations for radiative transfer simulations using synthetic trees with explicitly defined crown architectures.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Schumacher ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Juan Guerra-Hernández ◽  
Adrián Pascual

Abstract Background The NASA’s Global Ecosystem Dynamics Investigation (GEDI) satellite mission aims at scanning forest ecosystems on a multi-temporal short-rotation basis. The GEDI data can validate and update statistics from nationwide airborne laser scanning (ALS). We present a case in the Northwest of Spain using GEDI statistics and nationwide ALS surveys to estimate forest dynamics in three fast-growing forest ecosystems comprising 211,346 ha. The objectives were: i) to analyze the potential of GEDI to detect disturbances, ii) to investigate uncertainty source regarding non-positive height increments from the 2015–2017 ALS data to the 2019 GEDI laser shots and iii) to estimate height growth using polygons from the Forest Map of Spain (FMS). A set of 258 National Forest Inventory plots were used to validate the observed height dynamics. Results The spatio-temporal assessment from ALS surveying to GEDI scanning allowed the large-scale detection of harvests. The mean annual height growths were 0.79 (SD = 0.63), 0.60 (SD = 0.42) and 0.94 (SD = 0.75) m for Pinus pinaster, Pinus radiata and Eucalyptus spp., respectively. The median annual values from the ALS-GEDI positive increments were close to NFI-based growth values computed for Pinus pinaster and Pinus radiata, respectively. The effect of edge border, spatial co-registration of GEDI shots and the influence of forest cover in the observed dynamics were important factors to considering when processing ALS data and GEDI shots. Discussion The use of GEDI laser data provides valuable insights for forest industry operations especially when accounting for fast changes. However, errors derived from positioning, ground finder and canopy structure can introduce uncertainty to understand the detected growth patterns as documented in this study. The analysis of forest growth using ALS and GEDI would benefit from the generalization of common rules and data processing schemes as the GEDI mission is increasingly being utilized in the forest remote sensing community.


2018 ◽  
Vol 206 ◽  
pp. 254-259 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Qi Chen ◽  
Dale D. Gormanson ◽  
Brian F. Walters

2019 ◽  
Vol 31 (1) ◽  
pp. 105-133
Author(s):  
Zdzisław Kurczyński

Abstract The article is a retrospective analysis of the development of airborne laser scanning technology in the country in the past twenty years, i.e. from the beginnings of this technique use in Poland to the present day. The emphasis in the text is placed on development trends and scientific and application problems in the field of technology undertaken by national research centres. The review is based on numerous publications in this field, which have been released over two decades mainly in the “Archive of Photogrammetry, Cartography and Remote Sensing”. Therefore, the article is a presentation of the progress in the area of airborne laser scanning through an attempt to systematize and review national publications in this scope. It also presents the development of the national production potential and the level of the country’s coverage with data and products derived from airborne laser scanning.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 272 ◽  
Author(s):  
Łukasz Banaszek ◽  
Dave Cowley ◽  
Mike Middleton

While the National Record of the Historic Environment (NRHE) in Scotland contains valuable information on more than 170,000 archaeological monuments, it is clear that this dataset is conditioned by the disposition of past survey and changing parameters of data collection strategies over many decades. This highlights the importance of creating systematic datasets, in which the standards to which they were created are explicit, and against which the reliability of our knowledge of the material remains of the past can be assessed. This paper describes issues of data structure and reliability, then discussing the methodologies under development for expediting the progress of national-scale mapping with specific reference to the Isle of Arran. Preliminary outcomes of a recent archaeological mapping project of the island, which has been used to develop protocols for rapid large area mapping, are outlined. The primary sources for the survey were airborne laser scanning derivatives and orthophotographs, supplemented by field observation, and the project has more than doubled the number of known monuments of Arran. The survey procedures are described, followed by a discussion of the utility of ‘general purpose’ remote sensed datasets, focusing on the assessment of strengths and weaknesses for rapid mapping of large areas.


2018 ◽  
Vol 10 (10) ◽  
pp. 1562 ◽  
Author(s):  
Kathryn Fankhauser ◽  
Nikolay Strigul ◽  
Demetrios Gatziolis

Forest inventories are constrained by resource-intensive fieldwork, while unmanned aerial systems (UASs) offer rapid, reliable, and replicable data collection and processing. This research leverages advancements in photogrammetry and market sensors and platforms to incorporate a UAS-based approach into existing forestry monitoring schemes. Digital imagery from a UAS was collected, photogrammetrically processed, and compared to in situ and aerial laser scanning (ALS)-derived plot tree counts and heights on a subsample of national forest plots in Oregon. UAS- and ALS-estimated tree counts agreed with each other (r2 = 0.96) and with field data (ALS r2 = 0.93, UAS r2 = 0.84). UAS photogrammetry also reasonably approximated mean plot tree height achieved by the field inventory (r2 = 0.82, RMSE = 2.92 m) and by ALS (r2 = 0.97, RMSE = 1.04 m). The use of both nadir-oriented and oblique UAS imagery as well as the availability of ALS-derived terrain descriptions likely sustain a robust performance of our approach across classes of canopy cover and tree height. It is possible to draw similar conclusions from any of the methods, suggesting that the efficient and responsive UAS method can enhance field measurement and ALS in longitudinal inventories. Additionally, advancing UAS technology and photogrammetry allows diverse users access to forest data and integrates updated methodologies with traditional forest monitoring.


2021 ◽  
Vol 308-309 ◽  
pp. 108568
Author(s):  
Luiza Tymińska- Czabańska ◽  
Jarosław Socha ◽  
Paweł Hawryło ◽  
Radomir Bałazy ◽  
Mariusz Ciesielski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document