scholarly journals Optimization of Pin Fin Heat Sink by Application of CFD Simulations and Doe Methodology with Neural Network Approximation

2013 ◽  
Vol 18 (2) ◽  
pp. 365-381 ◽  
Author(s):  
K. Kasza ◽  
Ł. Malinowski ◽  
I. Królikowski

A design optimization of a staggered pin fin heat sink made of a thermally conductive polymer is presented. The influence of several design parameters like the pin fin height, the diameter, or the number of pins on thermal efficiency of the natural convection heat sink is studied. A limited number of representative heat sink designs were selected by application of the design of experiments (DOE) methodology and their thermal efficiency was evaluated by application of the antecedently validated and verified numerical model. The obtained results were utilized for the development of a response surface and a typical polynomial model was replaced with a neural network approximation. The particle swarm optimization (PSO) algorithm was applied for the neural network training providing very accurate characterization of the heat sink type under consideration. The quasi-complete search of defined solution domain was then performed and the different heat sink designs were compared by means of thermal performance metrics, i.e., array, space claim and mass based heat transfer coefficients. The computational fluid dynamics (CFD) calculations were repeated for the most effective heat sink designs.

Author(s):  
J. L. Zu´n˜iga-Cerroblanco ◽  
A. Herna´ndez-Guerrero ◽  
G. J. Kowalski ◽  
J. C. Rubio-Arana

This work describes the hydraulic and thermal behavior of pin-fin heat sinks when subjected to a constant heat flux with values equivalent to those generated incurrent electronic devices. The fin geometries analyzed are rectangular, circular and elliptical. The experimental analysis is performed for pin-fin in-line arrangement. The heat sink arrangement is also analyzed numerically for pin-fin in-line and staggered arrangements; and the results are compared. The thermal resistance and pressure drop is reported for all arrangements for different air velocities. The experimental and numerical results are compared and validated with recent technical literature. The Entropy Generation Minimization (EGM) is used to obtain an optimization of the heat sink pin fin arrangement. Analytical and empirical correlations for heat transfer coefficients and friction factors are used in the optimization model. This optimization model considers all relevant design parameters for pin-fin heat sinks, including geometric parameters, material properties and flow.


Author(s):  
Ali Kosar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

An experimental study on thermal-hydraulic performance of de-ionized water over a bank of shrouded NACA 66-021 hydrofoil micro pin fins with wetted perimeter of 1030-μm and chord thickness of 100 μm has been performed. Average heat transfer coefficients have been obtained over effective heat fluxes ranging from 4.0 to 308 W/cm2 and mass velocities from 134 to 6600 kg/m2s. The experimental data is reduced to the Nusselt numbers, Reynolds numbers, total thermal resistances, and friction factors in order to determine the thermal-hydraulic performance of the heat sink. It has been found that prodigious hydrodynamic improvement can be obtained with the hydrofoil-based micro pin fin heat sink compared to the circular pin fin device. Fluid flow over pin fin heat sinks comprised from hydrofoils yielded radically lower thermal resistances than circular pin fins for a similar pressure drop.


Author(s):  
Eric D. Truong ◽  
Erfan Rasouli ◽  
Vinod Narayanan

A combined experimental and computational fluid dynamics study of single-phase liquid nitrogen flow through a microscale pin-fin heat sink is presented. Such cryogenic heat sinks find use in applications such as high performance computing and spacecraft thermal management. A circular pin fin heat sink in diameter 5 cm and 250 micrometers in depth was studied herein. Unique features of the heat sink included its variable cross sectional area in the flow direction, variable pin diameters, as well as a circumferential distribution of fluid into the pin fin region. The stainless steel heat sink was fabricated using chemical etching and diffusion bonding. Experimental results indicate that the heat transfer coefficients were relatively unchanged around 2600 W/m2-K for flow rates ranging from 2–4 g/s while the pressure drop increased monotonically with the flow rate. None of the existing correlations in literature on cross flow over a tube bank or micro pin fin heat sinks were able to predict the experimental pressure drop and heat transfer characteristics. However, three dimensional simulations performed using ANSYS Fluent showed reasonable (∼7 percent difference) agreement in the average heat transfer coefficients between experiments and CFD simulations.


Author(s):  
Massimiliano Rizzi ◽  
Ivan Catton

An experimental study of a pin fin heat sink was carried out in support of the development of heat sink optimization methods requiring more detailed measurements be made. Measurements of heat flux and temperature are used to separately determine heat transfer coefficients for the pins and the base region between the pins. Three pitch to diameter ratios (distance from pin center to pin center measured diagonally) were studied: P/d = 3/1, 9/4, 3/2. Heat generation was accomplished using cartridge heaters inserted into a copper block. The high thermal conductivity of the copper ensured that the surface beneath the heat sink would be at a constant temperature. The cooling fluid was air and the experiments were conducted with a Reynolds numbers based on a porous media type hydraulic diameter ranging from 500 to 25000. The channel had a shroud that touches the fin tips, eliminating any flow bypass. The pin surface heat transfer coefficients match the values reported by Kays and London and by Zukauskas. The base region heat transfer coefficients were, surprisngly, larger than the pin values.


1999 ◽  
Vol 122 (3) ◽  
pp. 282-285 ◽  
Author(s):  
Luis A. Brignoni ◽  
Suresh V. Garimella

Experimental measurements were obtained to characterize the thermal performance of ducted air suction in conjunction with a pin-fin heat sink. Four single nozzles of different diameters and two multiple-nozzle arrays were studied at a fixed nozzle-to-target distance, for different turbulent Reynolds numbers 5000⩽Re⩽20,000. Variations of nozzle-to-target distance, i.e., open area, in ducted suction were found to have a strong effect on heat transfer especially with the larger diameter single nozzle and both multiple-nozzle arrays. Enhancement factors were computed with the heat sink in suction flow, relative to a bare surface, and were in the range of 8.3 to 17.7, with the largest value being obtained for the nine-nozzle array. Results from the present study on air jet suction are compared with previous experiments with air jet impingement on the pin-fin heat sink. Average heat transfer coefficients and thermal resistance values are reported for the heat sink as a function of Reynolds number, air flow rate, and pumping power. [S1043-7398(00)00903-8]


Author(s):  
S. B. Chiang ◽  
C. C. Wang

In this study, the concept of the thermal module of LEDs cooling by use of drilled hole to entrain air flow was examined. It is found that the drilled hole does not necessarily improve the overall performance. It depends on the size of the drilled hole, the number of drilled holes, and the locations. The heat transfer coefficients are generally increased with the number of drilled holes and the diameter of the drilled hole. In this paper, the plate fin heat sink has a higher heat transfer coefficients than pin fins, but the overall performance of the LED panel having pin fin outperforms that of plate fin. This is because the pin fin provides much larger surface area. For decrease the maximum temperature of the LED panel, placement of the drilled holes along the hot region will be more effective.


2013 ◽  
Vol 284-287 ◽  
pp. 697-701
Author(s):  
Tzer Ming Jeng ◽  
Sheng Chung Tzeng

The device made of fan and pin-fin heat sink should be a powerful heat sink for LED lamp. This study used transient liquid crystal experimentation to measure the end-wall heat transfer coefficient of linearly arrayed square pin array in the rectangular channel, and discussed the influence of axial spacing on heat transfer. The air was used as operating fluid, and the square pin size was 8 mm (d) × 8 mm (d) × 64 mm (Hf), arrayed in a 240 mm (L) × 120 mm (W) × 64 mm (H) rectangular channel. The relative lateral spacing (XT=ST/d) was set as 3, and the relative axial spacing (XL=SL/d=1.88~5) and the Reynolds number (Re=11047~17937) were changed. Considering the end-wall area, the average Nusselt number with square pin was 1.46~2.58 times of that without square pin, and the square pin array of XL= 3.75 had the maximum end-wall heat transfer gain.


Sign in / Sign up

Export Citation Format

Share Document